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Abstract 

A new method of optical frequency beat counting based on fast Fourier transform (FFT) analysis is described. 
Signals with a worse signal-to-noise ratio can be counted correctly comparing to the conventional counting 
method of detecting each period separately. The systematic error of FFT counting below 10 Hz is demonstrated 
and can be decreased. Additionally the modulation width of a frequency-stabilized laser with high frequency 
modulation index can be simultaneously measured during a carrier frequency measurement against an optical 
frequency synthesizer or other laser. 
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1. Introduction 

 
The optical beat which was first observed by A. Javan [1] is a crucial measurement tool for 

optical frequency standards. The frequency difference (radiofrequency beat) between two 
continuous wave lasers is generated in a detector by means of non-linear response to the 
electric field of the laser radiation. A measurement of the beat frequency of a frequency- 
stabilized laser with a single component of femtosecond comb from an optical frequency 
synthesizer developed by T.W. Hänsch and J.L. Hall [2, 3] allows easy traceability of lasers 
for length measurements to the SI second.  

A new fast Fourier transform (FFT) method for counting frequency of this beat (or offset 
frequency beat) is described in the article below. The main advantage of this method 
compared to the conventional counting with wide frequency bandwidth is that it is capable of 
correct counting weaker (frequency modulated or non-modulated) beat signals (down to 5 dB 
at 333 kHz bandwidth which is about 10 dB better than the limit of conventional counting). 
This property can be realized because the noise of optical frequencies h (less than the 
modulation width or frequency instability of the beat). In other wordsobserved in the beat is 
relatively reduced for measurement with a narrower frequency bandwidt, counting a larger 
number of similar periods together allows the relative noise reduction by an averaging. The 
minimal signal-to-noise ratio of FFT method is also better than the published levels used for a 
tracking oscillator assisted counting [4, 5]. 

 
2. Setup and principle 
 

The measurement setup is shown in Fig. 1. The laser beat frequency is generated in an 
avalanche photodiode and measured by a conventional counter in a standard setup. If the 
signal is not sufficient for correct counting, a tracking oscillator is used by other laboratories 
to improve the conventional counter performance (dotted line). However, the conventional 
counter and tracking oscillator can be replaced by an analog-to-digital converter with FFT 
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counting (dashed line). An analog-to-digital converter (Handyscope HS3) with 100 MHz 
sampling (8-bit resolution) was used in this experiment. The measurement with this simple 
converter contains a dead time between individual data evaluations. Thus the noise of 
measurement is worse than that of the conventional stream measurements. The dead time 
outweighs the measurement time by the ratio of about 100:1 in this setup due to the time 
necessary for calculations. Thus in the case of FFT counting, all 1 s samples (or longer) will 
in fact stand for shorter samples in the article below. The frequency accuracy of the converter 
can be assured by locking the analog-to-digital converter clock frequency or by 
simultaneously counting the reference frequency (e.g. 10 MHz) in the second channel of the 
converter device. 

 
   laser 1 

laser 2 

APD 

TO CC 

AD 

10 MHz ˜ 

M 

BS 

 
 

Fig. 1. The measurement setup (M – mirror, BS – beam splitter, APD – avalanche photodiode, TO – tracking 
oscillator, CC – conventional counter, AD - analog-to-digital converter , 10 MHz – reference frequency). 
 
The laser radiofrequency (RF) beat measurements were performed on an optical frequency 

comb (MenloSystems FC8004) with a GPS-disciplined Rb frequency standard [6]. The 
frequency is ordinarily measured with the dead-time-free counters of the fs-comb system. 
This RF beat between fs-comb and measured laser is displayed in the Fourier spectrum during 
measurement. The frequency of beat can be also adjusted into a selected frequency range by a 
slight change of repetition rate of the femtosecond laser. The desired frequency range for the 
FFT counting setup is from a few MHz to 50 MHz (for the converter used here). 

The RF beat signal for conventional counters is now also directly connected to the 
converter input. A single memory block of values obtained from the analog-to-digital 
converter contains voltage values of the beat signal. The length of this block can be arbitrary 
for non-modulated signals, but must be a length of a single period (or its multiple) of 
frequency modulation in case of frequency modulated lasers. (Their frequency modulation 
period is often known or can be easily measured. And then the   FFT period selection gives an 
advantage over the tracking oscillator technique.) The measurement data obtained from the 
memory of the converter are further split into consequent FFT blocks. For each FFT block, 
the Blackman–Nuttall window function is applied for error suppression in the following 
determination of peak frequency. The length of this block must be properly chosen because 
the laser frequency change within the FFT block must be smaller than the bandwidth 
corresponding to the FFT block length. However, longer FFT blocks allow counting weaker 
signals due to the enhanced noise reduction. For a signal with frequency modulation of 1 kHz 
we obtain for example 40 µs length of blocks for a width of 200 kHzp-p and 4 µs length of 
blocks for a width up to 10 MHzp-p. For a frequency modulation period of 120 µs and width 
6 MHzp-p we obtain a 2.5 µs FFT block length. 

FFT counting of the optical beat frequency works if the difference in optical carrier 
frequency between the two lasers does not vary in the sub-millisecond range by more than the 
measurement bandwidth. This short-term stability is often associated with the mechanical 
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properties of the optical cavity of each laser which prevent sudden changes in carrier 
frequency. Thus we can assume that the number of periods can be evaluated from the FFT 
peak frequency and phase within a short time interval (containing hundreds or thousands of 
periods of the beat signal). This radiofrequency peak must be evaluated by using amplitudes 
of adjacent frequency values to obtain better resolution than FFT bin width. As an 
interpolation we can use parabolic fitting. Nevertheless the systematic frequency shifts of the 
maximum can be substantial. Therefore the sixth order polynomial is used for (seven) 
amplitude values closest to the spectral maximum. The number of values for spectral lines 
broadened by windowing is selected to minimize the influence of FFT bins at line wings. 
Afterward the frequency position of the maximum is correctly calculated. The average peak 
frequency from all FFT blocks is used as carrier frequency result for a single period. 
Nevertheless the FFT peak frequency during the modulation period can be tracked. We can 
evaluate the modulation width from instantaneous frequency values of FFT peak positions 
during this modulation period (for example 1 ms). The amplitude (modulation width) and 
phase of modulation are simply evaluated from the sine and the cosine Fourier coefficient 
values for a given modulation frequency as a function of time. 

The advantage of this kind of counting is that the signal of each single period of the beat 
frequency may not be above the noise level. The weak signal observable on a spectrum 
analyzer with a given bandwidth can be counted correctly. Furthermore, the user can select an 
appropriate frequency range and  avoid possible errors from a disturbing signal. 
 
3. Carrier frequency measurement 
 

The properties of FFT counting were tested with a signal from a RF generator (model HP 
8647A) connected directly to the converter. The RF frequency with an amplitude of +10 dBm, 
modulation frequency 1 kHz and nominal modulation width 200 kHzp-p was used for this test. 
The average systematic error of measurement is below 100 Hz for carrier frequency and 
below 300 Hz for modulation width peak-to-peak. The source of this error is the finite 
measurement of frequency beat between the sampling rate with given FFT bandwidth and the 
measured carrier frequency with a given modulation width. The two standard deviations of 
noise for about 0.01 s samples (calculated within 1 s) is about 20 Hz for a carrier frequency 
with 200 kHzp-p modulation and about 6 Hz without applied modulation (residual modulation 
of the generator was slightly above 20 Hzp-p). These values are independent of the selection of 
the number of FFT blocks (in a reasonable range) and also they are not proportional to the 
carrier frequency value and its amplitude. The corresponding Allan standard deviations of 
carrier frequency measurements are shown in Fig. 2. 
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Fig. 2. The noise properties of carrier frequency counting (here for a carrier frequency of 10 MHz). 
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The systematic error can be further suppressed by calculation of amplitudes for the 
demodulated carrier signal over a whole modulation period. The initial values of parameters 
such as carrier frequency fC and frequency modulation width amplitude AM and its phase φM 
are taken from the previous FFT block analysis (for a known frequency of modulation fM). 
The Fourier amplitude AC for the given modulated carrier frequency is then 
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where Di are digital data of the total number of N obtained from the analog-to-digital 

converter at times ti and Wi is the window function. These carrier frequency amplitudes can be 
calculated for slightly modified input parameters and the new corrected values will be 
determined for maximal amplitude of the carrier frequency. After the first iteration the 
systematic error of carrier frequency is below 10 Hz. However the noise of parameters is not 
reduced. And the systematic error is also not decreased by the second iteration. 

Nevertheless this method can be further improved for primary optical frequency standards 
by a fast (e.g. 100 MHz sampling) stream FFT measurement currently available on the 
market. Using a high-end field-programmable gate array (FPGA) FFT analysis with special 
architecture the FFT counting can be exactly correct (without dead time needed for data 
transfer and calculations in a personal computer). The level of errors achieved above (i.e. less 
than a single converter sample) allow correct identification of phase and number of periods 
within a selected part of data stream and thus error free counting (i.e. without cycle slips). 

If the streaming FFT measurement is not implemented, a further reduction of systematic 
errors of carrier frequency calculated from individual FFT blocks can be obtained in the 
following way. The parabolic fitting of maximum symmetry in frequency values is less 
affected by systematic errors. Nevertheless it is not possible to guarantee that the measured 
frequency will be exactly the frequency of a FFT bin (see Fig. 3). Thus the estimation fe of 
frequency position of the maximum from the FFT bin interpolation (with a bandwidth e.g. 
100 kHz) can be used as the initial value for symmetric peak fitting.  From a calculation of 
Fourier amplitudes for frequencies fe-∆, fe and fe+∆ (where the difference ∆ is e.g. 1 kHz) we 
can obtain a new estimation fe with a systematic error down to 0.1 Hz (for an hour average of 
estimated carrier frequencies from millions independent data blocks). This small error value 
was obtained in several frequency ratio tests of different RF generator frequency outputs and 
its 10 MHz reference frequency. Although this method does not change (improve) the Allan 
variance, it sufficiently reduces the uncertainty. 

Afterwards the FFT counting was tested on measurements of a real noisy signal – RF beat 
of iodine frequency stabilized He-Ne laser (Winters Model 100) with fs-comb. The frequency 
of this beat was set close to 30 MHz and its amplitude was about -10 dBm. The signal-to-
noise ratio for this measurement was about 20 dB for a 333 kHz bandwidth. The measurement 
results from both methods are shown in Fig. 4. 
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Fig. 3. An illustration of the difference between FFT (hollow points) and FT amplitudes symmetrically to the 

frequency center (filled points). 
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Fig. 4. a) Example of frequency counting of the beat between a iodine frequency stabilized He-Ne laser and fs-

comb. b) Corresponding Allan standard deviation. 
 

The measured instability by current implementation of the FFT method is worse than the 
intrinsic instability of the beat signal due to dead time for calculations. The 1 s sample of FFT 
counting in charts corresponds to about 10 ms of processed sample length (i.e. the standard 
deviation is 10 times worse for the square-root averaging of white frequency noise). 
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Fig. 5. Error comparison of both counting methods (for different FFT bandwidths: 333 kHz filled points and 83 
kHz open points). Each point corresponds to a decrease of signal-to-noise ratio (from about 30 dB at 20 kHz 

bandwidth) of about 5 dB (from left to right). The dashed lines represent the statistic error of 1 minute 
measurements for each counting method. 

 
While the signal-to-noise ratio of about 15 dB (at 333 kHz bandwidth) is the limit for 

correct conventional counting, this FFT method allows counting down to the ratio of 5 dB. 
I.e. the FFT method counting is still correct for about 10 dB weaker signals than conventional 
counting. Results of a correct counting capability test are shown in Fig. 5. Each point 
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represents simultaneous FFT and conventional counting measurement of 1 minute length. The 
decrease of signal-to-noise ratio for the beat signal results in a worse counting. We can see at 
the fourth point from the left that the error of FFT counting is still correct within the statistic 
error of 16 kHz (2σ) whereas the error of conventional counting is more than 200 kHz from 
the expected value obtained from previous correct counting results for this laser. 

And finally a long-term test of counting was carried out. The error of frequency 
measurement of a He-Ne laser by this method compared to dead-time-free counting (with 
sufficient signal level) is less than 1 kHz for a few hours averaging. This value is within the 
statistical error of this measurement and thus the FFT method was validated for ordinary 
measurement to this level. 

 
4. Modulation width measurement 

 
An additional advantage of this method is the capability of modulation width 

measurement. Frequency stabilized lasers measured by a fs-comb are often frequency-
modulated. The modulation parameters are described in the Recommendation of CIPM-CCL 
[7] because the absolute frequency of a stabilized laser is sensitive to the width of modulation. 
Moreover this method allows measuring the modulation width of the beat signal in real time 
and tracking the corresponding frequency shift for each measurement. 

The most common laser for precise length measurements is a He-Ne 633 nm frequency- 
stabilized laser. The laser used for the modulation width measurements has a modulation 
frequency of 8.33 kHz (120 µs period) with nominal modulation width of 6 MHzp-p from the 
Recommendation. The deviation from the nominal value was measured to be less than 0.1% 
with long term drift below 0.02% per hour (see Fig. 6). The standard deviation of modulation 
width measured on different iodine components (measured within a few hours) was below 
1 kHz. Moreover, it was previously tested that the difference of modulation width 
measurements is always less than 1% compared to the off-line method published in [8]. For a 
modulated signal with a high frequency modulation index (much more greater than one) the 
uncertainty of the FFT method described here is also better compared to values obtained by 
methods from commercial spectrum analyzers. The digital demodulation of FFT maxima 
during a selected modulation period does not suffer from systematic errors such as nonzero 
linewidth and bandwidth. Another advantage of the FFT method is the feature that the 
measurement does not need the second continuous wave laser of the same type (wavelength) 
to measure the modulation width as is needed in the above-mentioned off-line method. 

 

5.96

5.97

5.98

5.99

6.00

6.01

6.02

6.03

6.04

6.05

0 5 000 10 000 15 000 20 000 25 000 30 000

Time [s]

M
od

ul
at

io
n 

w
id

th
 p

-p
 [

M
H

z]

 

  

0.1

1

10

100

1000

10000

1 10 100 1 000 10 000

Averaging time [s]

A
lla

n 
st

an
da

rd
 d

ev
ia

tio
n 

[H
z]

6 MHz p-p

200 kHz p-p

without modulation

 
a) b) 

 
Fig. 6. a) Modulation width of a He-Ne laser as a function of time. (1 s and 100 s sample length with about 99% 
of dead time) b) Corresponding Allan standard deviation (black line) compared to the measured variations for 

the signal from a RF generator (in grey) with modulation 200 kHzp-p (solid line) or almost non-modulated 
(dashed line). 
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When we apply demodulation based on values from FFTs we can obtain instantaneous 
values for the carrier frequency (shown in Fig. 7a). We can see that the frequency changes 
between FFT blocks are smaller than the value of a correctly selected FFT bandwidth (here 
for example 666 kHz). This smooth change of carrier frequency thus confirms the FFT 
counting assumption from section 2. We can also observe that the Allan standard deviation of 
beat frequency between a He-Ne laser and RF oscillator disciplined fs-comb is flat (flicker 
frequency noise) in this range. However the carrier frequency of some He-Ne lasers can be 
disturbed. The laser optical frequency is modulated by a switching frequency (here about 
25 kHz) of the high-voltage power supply of the laser tube (with modulation width up to 
100 kHz). Nevertheless the Allan standard deviation of beat between the two He-Ne lasers 
(model Renishaw XL-80) without internal iodine cell exhibits values about 1 kHz in the sub-
millisecond range if the unwanted frequency modulation is subtracted (see Fig. 7b). 
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Fig. 7. a) Black line shows frequency modulation of the beat between fs-comb and He-Ne laser and the grey line 

shows residuals after subtraction of modulation (i.e. stability of carrier frequency). b) Corresponding Allan 
standard deviation (black line) of carrier frequency (for a single 1.2 ms interval) compared to FFT counting 

capability for 10 MHz signal of reference frequency (grey line). The Allan standard deviation for a beat 
frequency between two He-Ne lasers is plotted for comparison – with unwanted frequency modulation (open 

squares) and after its subtraction (filled squares). 
 

5. Conclusions 
 

A common counter with conventional counting is often limited by noise which is 
disturbing the trigger level and its hysteresis. The signal-to-noise ratio can be improved by 
filtering. However analog filters are not so versatile and convenient for counting the 
frequency of modulated signals. A digital filter is a simple and effective solution. And 
together with FFT, a weaker signal can be counted due to digital decrease of the counter 
frequency bandwidth. 

The new useful tool for optical frequency beat measurement was successfully introduced. 
Results of the first simple realization are sufficient for secondary optical frequency standards 
and can improve their repeatability. Beat signals weaker by 10 dB (or more) can be now 
measured without loss of calibration accuracy compared to conventional counters. The 
modulation width of lasers can be measured simultaneously with their frequency deviation 
from the frequency standard and thus corrected for their influence on the carrier frequency 
and can improve their repeatability. This FFT counting is practical for frequency filtering 
capability and further simplifies measurements with optical frequency synthesizers. 
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