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Abstract 

Considering the problem to diagnose incipient faults in nonlinear analog circuits, a novel approach based on  
fractional correlation is proposed and the application of the subband Volterra series is used in this paper. Firstly, 
the subband Volterra series is calculated from the input and output sequences of the circuit under test (CUT). 
Then the fractional correlation functions between the fault-free case and the incipient faulty cases of the CUT are 
derived. Using the feature vectors extracted from the fractional correlation functions, the hidden Markov model 
(HMM) is trained. Finally, the well-trained HMM is used to accomplish the incipient fault diagnosis. The 
simulations illustrate the proposed method and show its effectiveness in the incipient fault recognition capability.   

Keywords: nonlinear circuits, fault diagnosis, Volterra series, fractional correlation, hidden Markov model 
(HMM). 
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1. Introduction 
 

With the successful application of technology of testing digital parts in mixed-signal 
circuits, the problem how to improve the capability of diagnosing analog parts has received 
more attention. It is reported that 80% of the faults occur in the analog segments in mixed-
signal circuits [1].Therefore, research on the diagnosis of analog circuits has become 
important [2]. 

Fault models for analog and mixed-signal circuits can be classified into two categories: 
hard faults and soft faults [3]. The difference between the two kinds of faults is whether the 
topology of the CUT change or the nominal parameters of the analog parts vary greatly [4]. It 
is more difficult to diagnose soft faults than hard faults because the features of the soft fault 
cases of the CUT are not significant. In recent years, many methods such as the fault 
dictionary method [5, 6], the neural network [7-10], fuzzy analysis [11, 12], the FNLP method 
[13], the wavelet preprocessing [14], the test-point node selection [15] , PCA method [16] and 
the support vector machine algorithm [17-19] have been presented for fault diagnosis of 
analog circuits.  

However, all the aforementioned fault diagnosis methods and fault models cannot properly 
diagnose incipient faults. The incipient fault occurs when a parameter of the electronic 
component begins to change. Usually, the variation of the parameter of an  incipient faulty 
component is small, which means that the circuit can still work and its performance begins to 
degrade from its normal operating state. In fact, the incipient fault is a kind of special soft 
fault. Comparing with the common soft fault, the variation of the parameter of the incipient 
faulty component is smaller, which makes it more difficult to diagnose incipient faults. For 
example, the incipient fault of the gain of the operational amplifier occurs when the parameter 
of the gain exceeds that of the parts’ nominal value by [1%, 3%] while the common soft fault 



 
 Y. Deng, Y. Shi, W. Zhang: DIAGNOSIS OF INCIPIENT FAULTS IN NONLINEAR ANALOG CIRCUITS 

 

of the gain of the operational amplifier can be defined within the range of [5%, 15%] 
exceeding the nominal values. 

Based on the ideas in [20], reference [21] developed a method for diagnosing incipient 
faults. The reference combined HMM with LDA to obtain the incipient fault recognition 
capability. However, the method of [21] neglects the influence of nonlinearity in analog 
circuits. In practical applications, analog circuits commonly exhibit certain nonlinearities that 
cannot be sufficiently estimated by conventional linear models [22]. Neglecting the influence 
of nonlinearity will result in the failure to diagnose some incipient faults in analog circuits. 
Therefore, researches on nonlinearity are very important in both theory and applications. 

To solve the problem of nonlinearity, this paper proposes a new technique that is suitable 
for incipient fault diagnosis. It is based on the fractional correlation to extract the fault 
features. The proposed method is made adaptive to the influence of nonlinearity. Fig. 1 shows 
the basic principle of the fault diagnosis method proposed in the paper. In the proposed 
method, the fault features of known condition of the CUT are extracted to build a fault 
dictionary firstly. Then, the fault features of unknown condition of the CUT are extracted and 
the faults are identified by HMM. 

 

 
 

Fig.1. The block diagram of the proposed method. 
 
The remainder of the paper is organized as follows. In section 2, the fault diagnosis method 

is described. The HMM is briefly reviewed and the detailed fault diagnosis steps are given in 
section 3. Two simulations described in section 4 test the performance of the proposed 
method. Finally, conclusions are drawn in section 5. 
 
2. Fault Diagnosis Method 

 
The Volterra kernels (called Volterra series in the discrete domain) are widely used to 

model nonlinear circuits as transfer functions model linear circuits [23, 24]. The Volterra 
kernel can characterize a class of nonlinear circuits which have the features of cause, stability 
and time-invariability [25]. The Volterra kernel is the fundamental feature which will not 
change even if input signals change. Different nonlinear circuits have different Volterra 
kernels. If faults occur, the Volterra kernels of the nonlinear circuit will change because the 
condition of the circuit has changed. In the discrete time domain, a Volterra series description 
of ith-order nonlinearity can be defined as equation (1) [24]. 
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where u(n) and y(n) are sampled versions of the continuous-time input/output signals, while 
e(n) denotes the model error at the time instant nT (T is the sampling time interval). 
hi(m1,…mi) is the ith-order Volterra series where h1(m1) and h2(m1,m2) represent the linear and 
quadratic Volterra series respectively. It should be noted that the quadratic Volterra series 
represents nonlinearity. y1(n) ,y2(n) …, yi(n) denote the output signals of the corresponding 
components at nT respectively. M1, M2,…Mi are the corresponding Volterra series memorial 
lengths respectively. 

Equation (1) is available for both fault-free and faulty cases of the CUT. The differences 
between fault-free and faulty cases or between faulty cases correspond to the differences 
between Volterra series. Owing to the dimensional disaster of Volterra models, 2nd-order 
Volterra-series is considered to reduce the complexity of computation [25]. If faults occur, 
h1(m1) and h2(m1,m2) will change and different faults induce different Volterra series. 

Assume ( )nϕ  is the discrete mother wavelet, then: 
 

 , /2

1( ) ( )
2 2j k j j

n
n kϕ ϕ= − , (2) 

 

where j and k are the scaling and shifting parameters repectively. 
For signals 2( )x n L∈ , the discrete wavelet representation of a signal x(n) can be given as 
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where N is the length of sequence x(n) and ,j kx  is the wavelet transform of x(n). 
Thus 1, j,kY  can be calculated from the 1st-order output signal y1(n). (y1(n) can be calculated 

from y(n) by the Vandermonde method). 
 

 1, , ', '
ˆ ˆ

j,k j',k' j,k j k=Y U H , (4) 
 

where 1,
ˆ

j,kY is the estimation of 1, j,kY . 1, j,kY and j',k'U  are the wavelet transform of y1(n) and 
input signal u(n) respectively. , ', '

ˆ
j,k j kH  is the estimation of the 1st-order subband Volterra 

series , ', 'j,k j kH . 
Let y1(n) and u(n) are transformed with the same scaling and shifting parameters, i.e., j, j’ 

and k, k’  change in the same way. Hence, , ', '
ˆ

j,k j kH  can be written as ˆ
j,kH  and we can form the 

linear subband Volterra series sequence as equation (5). 
 

 0 0 0 (0) 1 1 0 1 (1) 1 ( ) 1 1 ( 1) 1
ˆ ˆ ˆ ˆ ˆ ˆ{ ,..., , ,..., ,..., ,..., }T T T T T T

, ,K , ,K j,K j J ,K J− − − − − −=H H H H H H H , (5) 
 

where J is the number of the wavelet decomposition layer and K(j-1) is the shifting number in 
the jth wavelet layer. The mth element of H is written as H(m). 

2, j,kY  can be calculated from the 2nd-order output signal y2(n). (y2(n) can be calculated from 

y(n) by the Vandermonde method). 
 

 2, , ' ''
ˆ ˆ

j,k j',k' j' ,k j,k, j',k', j",k"=Y V B , (6) 
 

where 2,
ˆ

j,kY is the estimation of 2, j,kY . 2, j,kY  is the wavelet transform of y2(n) and , ' ''j',k' j' ,kV  is 
the 2-dimensional wavelet transform of u(n). ˆ

j,k, j',k', j",k"B  is the estimation of the 2nd-order 
subband Volterra series j,k, j',k', j",k"B . 
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Assume that y2(n) and u(n) are transformed with the same scaling and shifting parameters, 
i.e., j, j’ , j’’  and k, k’, k’’  change in the same way. Hence, ˆ

j,k, j',k', j",k"B  can be written as ˆ
j,kB  

and we can form the quadratic subband Volterra series sequence as equation (7). 
 

 0 0 0 (0) 1 1 0 1 (1) 1 ( ) 1 1 ( 1) 1
ˆ ˆ ˆ ˆ ˆ ˆ{ ,..., , ,..., ,..., ,..., }T T T T T T

, ,K , ,K j,K j J ,K J− − − − − −=B B B B B B B , (7) 
 

where J and K(j-1) are of the same meaning as equation (5). The mth element of B is B(m). 
According to reference [26], the cross-fractional correlation function between two 

continuous-time functions 1( )f t  and 2 ( )f t is 
 

 1 2 1 2( )( ) ( )[ ( )]*f f f f dα α
α ρ υ υ ρ υ⊗ = −∫ , (8) 

 

where α is the angle parameter of the Fractional Fourier Transform (FRFT) and 
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Taking into account the definition and property of FRFT [27, 28], we can derive out equation 
(10) from equations (8) and (9). 
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Let 2 cos sin /2( , ) je πρρ α αθ ρ α −=  and 2 sin( , , ) j tt e π ρ αϑ ρ α −= , equation (10) can be written as 
 

 1 2 1 2( )( ) ( , ) ( )[ ( cos )]* ( , , )f f f t f t t dtα ρ θ ρ α ρ α ϑ ρ α⊗ = −∫ . (11) 
 

Equation (11) is in the continuous-time domain. In the discrete domain, (11) can be written as 
 

 1 2 1 2( )( ) ( , ) ( )[ ( cos )]* ( , , )
m
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The cross-fractional correlation function can be used to describe the relation between two 
functions or sequences [26]. Therefore it can be used to find differences between the fault-free 
case and the faulty case of the CUT or between two faulty cases. Assume that H and B are the 
linear and quadratic subband Volterra series sequences of the fault-free case and H fi and B fi 
are the linear and quadratic subband Volterra series sequences of the ith faulty case. From 
equation (12), the fractional correlation functions of the linear and quadratic subband Volterra 
series sequences between the fault-free case and the faulty case of the CUT are 
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Two fault feature variables can be constructed as 
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The cross-fractional correlation function of subband Volterra series sequences represents 
the fundamental differences of two circuits or two conditions of the one circuit. Different 
faults will induce different V1(α1) and V2(α2) . Therefore, the two variables can be used as the 
fault features. The formed fault features can be assessed by defining the normalized error 
functions as 
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where e(1) and e(2) represent the errors of the linear and quadratic fault features between two 
different conditions of the CUT. The values of e(i) denote the degree of the difference. The 
bigger they are, the more significant the difference between the two different conditions of the 
CUT. 
 
3. Fault Diagnosis Using HMM 
 

A HMM is a doubly stochastic process with an underlying stochastic process that is 
unobservable, but can be observed through another set of stochastic processes [29]. In the 
fault diagnosis problem, the faulty states of the CUT are unobservable directly, i.e., they 
correspond to the hidden part of the HMM. The hidden states of the CUT can be observed 
through another set of stochastic processes that produce a sequence of uncertain test 
outcomes. Therefore, a HMM can provide realistic representations of the fault diagnostic 
process. 

A HMM for the fault diagnosis can be defined by the following model notation: 
(1) The state sequence X={x1, ... ,xt, ... ,xT}, where xt is the state vector at time t. xt∈S={s1, 

... , si, ... ,sN}, i=1,2,…N. The finite set of fault sources S is associated with the faulty 
conditions of the CUT (including the fault-free condition) and N is the number of states of the 
CUT. 
  (2) The observation sequence O={o1 , . . . ,ot ,. . . , oT}, where ot is the observation vector at 
t. ot ∈Ω={v1,...,vk ,...,vK}. The finite set of outcome Ω can ascertain the integrity of faults of 
the CUT (including the fault-free condition) and K is the number of possible observations. 

(3) The initial state distribution π = [πi],πi = P(x1 = si ). 
(4) The transition probability matrix, A = [aij], where aij = P {xt+1 = sj | xt = si } is the 

transition probability of taking the transition from state i to state j. 
 (5) The output probability matrix B = [bik] where bik = P(ot = vk| xt = si ) is the probability of 

the observation, ot, at the given system state, xt. 
Hence, the complete parameter set of the HMM Λ = (X, O, π, A, B) or its simplified form 

Λ = (π, A, B) can be used to express the HMM, The structure of a typical HMM is shown in 
Fig. 1. 

The use of the HMM to solve the fault diagnosis problem requires two steps: 
1) Training the HMM, i.e., identification of the parameters ˆ ˆ ˆˆ( , , )=Λ π A B . 
2) Testing the HMM, i.e., diagnosis of the faults using the well-trained HMM. 
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Fig. 2. The hidden Markov model (HMM). 
 

The first step, training the HMM, can be completed by the Baum–Welch algorithm  
[30, 31]. This algorithm identifies the parameters ˆ ˆ ˆˆ( , , )=Λ π A B  by maximizing the 
probability of the observation sequences. Assume that there are N faulty conditions and 1 
fault-free condition of the CUT. There will be N+1 V1(α1) and V2(α2) which can be calculated 
as equation (14). In this paper, the fault features V1(α1) and V2(α2) are used to form the 
observation sequences of the HMM. Let 
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where 1
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jα ( i,j=1,2,…5 ) are randomly selected between the range (0,π/2]. 

According to the Baum–Welch algorithm, ˆ ˆ ˆˆ( , , )=Λ π A B  can be calculated as 
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The forward operator σ and the backward operator β can be modified as equations (20) ~ 
(23). 
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 1 1 2( ) ( , | )t t t T t ii Pβ + + += =o o o X S ΛL . (23) 
 

The recursive process does not stop until the convergence criterion is met and the 
parameters of the HMM ˆ ˆ ˆˆ( , , )=Λ π A B  are estimated. 

After the N+1 HMMs have been trained well, the second step, testing the HMM for the 
fault diagnosis will be carried on. We will find the most likely state sequence X that resulted 
in the observation sequence O, which is equivalent to maximizing P(O|X). This step, training 
the HMM, can be completed by the Viterbi algorithm [29]. This algorithm is a recursive 
process as follows. 
    1) Initialize the well-train HMM. Let 
 

 
1 1

1

( ) ( ) ( )
,1

( ) 0
ii i b

i N
i

δ π
ψ

=
≤ ≤ =

o
. (24) 

 
    2) Recursion. Let 
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The recursive process does not stop until t=T and we will have 
1

* max[ ( )]T
j N

P jδ
≤ ≤

=  and 
*

1
arg max[ ( )]T T

j N
j jδ

≤ ≤
= .  

Therefore, P(O|X) has been maximized. By backtracking we can find the most likely state 
sequence X associated with the observation sequence O. From X, we can identify the 
unknown condition of the CUT and diagnose the incipient faults. 

 
4. Simulation 
 

In this section, two simulations of nonlinear analog circuits are given to show the steps and 
results of fault diagnosis of the proposed method and the proposed method will be compared 
with other existing methods. The Daubechies 1 wavelet (DB1) is selected as the mother 
wavelet to calculate the subband Volterra series. 

 
4.1. Simulation 1 
 

In simulation 1, a band-pass filter circuit [21, 32] is analyzed. The nominal parameters for 
all components are labelled in Fig. 3. The tolerance of R1~R8 is 10%, that of C1~C8 is 5% 
and that of R9~R11 and Av1~Av5 (the gains of U1~U5) are 1% [21]. The ranges of 
corresponding incipient faults are listed in Fig. 3. 
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Fig. 3. Simulation 1- The band-pass filter circuit. 
 

Table 1. Incipient faults in simulation 1. 
 

 
 

In Table 1, “(+) Fault” represents an increase of the component parameter and “(-) Fault” 
represents a decrease of the component parameter. In the following tables, the two symbols 
have the same meaning. Vn is the nominal parameter of the component. 

Although approximating the circuit to be linear can provide good results in some cases, real 
circuits are not purely linear [14]. In real-world applications, theoretical linear circuits such as 
the band-pass filter circuit are influenced by weak nonlinearity and erroneous outputs (due to 
faults in the circuit) and  have the possibility of being nonlinear. Therefore, the band-pass 
filter should be taken as a nonlinear circuit to reduce the errors of identification of the CUT. 

In the simulation, the proposed method is used for the fault diagnosis of the CUT. The 
results of the proposed method are compared with other three methods: LDA-HMM [21], 
adaptive Volterra filter (AVF) [33] and the support vector machine (SVM) algorithm [19]. 
The stimulus is a simple 1 KHz 2Vac sinusoid voltage source for the proposed method while 
a complicated input stimulus is constituted by 13 test-frequency sinusoids with an amplitude 
of 2 for the other three methods [21]. The simple single-frequency stimulus can be used by 
the proposed method is that the observation vector sequences can be formed by changing the 
FRFT parameter α. For the other three methods, the observation vectors can only be formed 
by changing a different stimulus frequency. 

For comparison, R1, R6, C4, C7, R11, Av3 components used in [21] will be selected as the 
potential faulty components in the simulation. To be more representative, other randomly 
selected 5 potential cases are analyzed also. They are two C2 incipient fault cases, two Av2 
incipient fault cases and one R9&Av1 multiple incipient fault case. Hence, 18 cases of the 
CUT (17 fault cases and 1 fault-free case) are analyzed by the proposed method and compared 
with other methods. The cases are shown in Table 1. 

210



 
Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 203-218. 

 

Each case of the CUT is driven by the stimulus signal for M1 (M1=300 in the simulation) 
times respectively to implement the Monte Carlo analysis. The response voltage of each 
experiment is used as the output sequences, i.e., y(n) in equation (1). According to the 
proposed method, the fault feature variables V1 and V2 can be calculated according to 
equation (14) and the observation vector is formed as equation (16) for each case of the CUT 
(altogether there are M1 observation vectors). In the simulation, α1 and α2 are set π/10, 2π/10, 
3π/10, 4π/10, 5π/10 respectively. Table 2 gives the error values e(1),e(2) between the fault-
free case and the faulty cases. From the results in the Table, the differences between each case 
is clear, which is important to improve the fault diagnosis capability of the HMM used in the 
proposed method. 

 
Table 2. Values (%) of e(1) and e(2) in simulation 1. 

 

 
 

For each circuit case, an observation sequence is formed by randomly selecting L 
observation vectors and M1/L observation sequences are obtained to train the HMM. The 
detailed steps of training the HMM are according to section 4. Testing each well-trained 
HMM is done for M2 (M2=300 in the simulation) times by the same stimulus signal as 
training the HMM to complete the fault diagnosis. The results of fault diagnosis are shown in 
Table 3. In the same table, the results of the proposed method are compared with the results of 
references [21, 33, 19]. 

 
Table 3. Results of fault recognition rates (%) in simulation 1. 
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From Table 3, the performance of the proposed method is superior to the other three 
methods with respect to fault recognition capability. The mean fault recognition rate of the 
proposed method is 97.76% while its worst fault recognition rate is 89.67% (in R9& Av1(-) 
multiple fault), which are both the best among the methods in Table 3. It shows that the 
proposed method can diagnose all the 18 proposed incipient faults of the CUT. The mean 
fault recognition rate of LDA-HMM is 91.19%, which is good enough in practical fault 
diagnosis. However, LDA-HMM is not good at diagnosis of the Av2(+), Av3(+) and R9& 
Av1(-) faults and its worst fault recognition rate is 48.67% (in R9& Av1- multiple fault), only 
54% of that of the proposed method. The table also shows the performances of adaptive 
Volterra filter (AVF) and the support vector machine (SVM) algorithm. From the table, the 
incipient fault recognition capability of AVF and SVM is weaker than that of the proposed 
method and LDA-HMM. 

The reasons that the fault diagnosis capability of the proposed method is better than the 
other three methods are as follows. 

1) The weak nonlinearity of the CUT is considered in the proposed method while the other 
methods analyze the CUT as a linear circuit. When components U1~U5 are incipient faulty, 
the CUT is affected by the effects of the weak nonlinearity because incipient faults of U1~U5 
generate a small range of parameters variation and weak nonlinearity of the CUT. However, 
the linear method cannot deal with the nonlinearity. 

2) Due to the function of the angle parameter α, the proposed method can provide better 
fault feature resolution than that of the other three methods, which is helpful to improve the 
fault recognition capability. 

3) The elements of the observation vector for the HMM in the proposed method are more 
independent than that of the other methods. This is because the correlation degree of different 
α is less than that of different frequency stimulus used by the other methods. 

Let us take the instance of fault-free, Av2(+) and Av3(+) cases to give detailed and direct-
viewing examples how the incipient faults are detected and isolated. Select randomly one 
from the M2 test results of the three conditions of the CUT. The test results of each step are 
shown in Fig. 4~9. In the Figs, Av2 fault represents Av2(+) fault and Av3 fault represents 
Av3(+) fault. 

 

  
Fig. 4. Linear Volterra series in full band. Fig. 5. Quadratic Volterra series in fullband. 
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Fig. 6. Linear Volterra series in feature subband. Fig. 7. Quadratic Volterra series in feature subband. 

 

 

 

 
Fig. 8. The values of V1 by different α1. Fig. 9. The values of V2 by different α2. 

 
Fig. 4~9 show the reasons why the proposed method has higher fault recognition than the 

other methods. Fig. 4 and 5 show the results of the linear and quadratic Volterra series in full 
band. The results of the three circuits are too close to make differences. Fig. 6 and 7 show the 
results of the linear and quadratic Volterra series in feature subband (The feature subband is 
the subband where the differences of the results are clearest). The differences of the results 
between the fault-free case and the two faulty cases of the CUT in the linear subband Volterra 
series are not clear while that in the quadratic Volterra series is clear. The reason is that using 
the linear Volterra series is the linear method as reference [21] use. As the linear method does 
not consider the nonlinearity, the diagnostic results of Av2(+) and Av3(+) faults are not 
satisfactory. Since the quadratic subband Volterra series consider the effects of the weak 
nonlinearity, the differences between the fault-free case and the two faulty cases of the CUT 
are significant. This is shown in Fig. 7. 

However, the subband Volterra series cannot isolate the two faulty cases- Av2+ and Av3+ 
fault cases because the differences between the two subband Volterra series are not clear 
enough for isolation. The waveforms in Fig. 6 and 7 show the problem. In the two figures, the 
waveforms of the two fault cases are too close to differ from each other. Therefore, it is 
difficult to decide whether the fault is Av2(+) or Av3(+) even though we know that some fault 
has occurred. 

To solve the problem, the fractional correlation function explained in section 2 in the paper 
is introduced. The fault features V1(α1) and V2(α2) are used to identify the differences 
between cases of the CUT. By using fractional correlation functions, the small differences 
between the two cases are enlarged as shown in Fig. 8 and 9. According to the two figures, we 
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can find that when the FRFT angle parameter α=π/2, i.e. the Fourier transform is used, the 
difference between the two faulty cases is smallest. By changing the α value, the difference 
between the two faulty cases will be enlarged significantly. From the two figures, it could be 
noted that the values of V1 and V2 in different α1 and α2 are independent. Therefore, V1 and 
V2 can be used to form the observation vector sequence ot as equation (16) and the HMM 
trained by ot has higher fault recognition rates than that in [21, 33, 19]. From Fig. 8 and 9, it 
could also be noted that the differences between V2 of Av2(+) and Av3(+) cases are more 
significant than that between V1. This can be demonstrated by e(1) and e(2) of the two cases 
in Table 2. 

To analyze the relation between the mean fault recognition rate and the observation vector 
dimension D, and the relation between the mean fault recognition rate and the testing 
sequence length L, some other experiments were carried out. D is set to 2, 4, 10 (D is 9 in 
[16]) and 20. L is set from 5 to 10. The corresponding recognition rates of the proposed 
method and LDA-HMM [21] is presented in Table 4 for different D and L (D and L are not 
used in AVF and SVM). 

 
Table 4. Comparison of the mean fault recognition rates (%) with different D and L in simulation 1. 

 

 
 

According to Table 4, when D is small, it affects the fault recognition rate for the four 
methods. When D is big enough, it does not affect the fault recognition rates for the four 
methods. The table also shows that the mean fault recognition rate of the proposed method is 
better than in the other three methods when D = 4, 10 or 20. This conclusion is the same as 
that from Table 3. Hence, D should be set ‘>= 4’ . From the Table we can observe that the 
length of the testing sequence has some effect on the recognition rate, but the recognition rate 
of the proposed method is always higher than that of the other methods with the same length 
of the testing sequence when D >= 4. 

According to Table 3 and 4, the proposed method can diagnose the incipient faults better 
than the methods in [21]. The advantage of the proposed method comes mainly from 
considering the influence of nonlinearity and using the fractional correlation function. The 
detailed analysis has been given above. 
 
4.2. Simulation 2 

 
To show the universality of the proposed method, another nonlinear analog circuit is 

considered. It is a logarithm amplitude circuit as in Fig. 10. The nominal parameters for all 
components are labeled in the same figure. The tolerance of R1~R5 is 10%, that of C1~C2 is 
5% and that of Av1~Av4 (the gains of U1, U2, T1 and T2) are 1% (The tolerance is referred 
as [21]). The stimulus signal is the same as in simulation 1. 

15 cases are analyzed by the proposed method. The cases are shown in Table 5. The 
simulation conditions are the same as in simulation 1. For each circuit case, 300 observation 
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vectors after Monte Carlo analysis are used to form 30 training sequences and 30 testing 
sequences are formed in the same way for each circuit case. The diagnosis results and the 
comparison results of the four methods are shown in Table 5. 

 

 

Fig. 10. Logarithm amplitude circuit in simulation 2. 
 

From Table 5, the performance of the proposed method is higher than that of the other three 
methods in fault recognition capability. The mean fault recognition rate of the proposed 
method is 97.82% while its worst fault recognition rate is 90.33% (in Av1(+)&Av4(-) 
multiple fault), which are both the best among the methods in Table 5. The mean fault 
recognition rate of LDA-HMM is 86.31%, but it fails in the fault diagnosis of the two Av3 
faults and the two multiple faults due to the low fault recognition capability in the four faults. 
Like simulation 1, the results of the AVF and SVM method are not satisfactory compared to 
the proposed method and LDA-HMM. This conclusion is the same as in simulation 1. 

 
Table 5. Results of fault recognition rates (%) in simulation 2. 
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Table 6. Comparison of the mean fault recognition rates (%) with different D and L in simulation 2. 
 

 
 

Some other experiments were carried out to analyze the relations between the mean fault 
recognition and the observation vector dimension D, and the relation between the mean fault 
recognition and the testing sequence length L. The same conditions as simulation 1 were 
given and the corresponding fault recognition rates of the proposed method and LDA-HMM 
are presented in Table 6 for different D and L (D and L are not used in AVF and SVM). 

From Table 6 we can draw the conclusion that the proposed method significantly 
outperforms the LDA-HMM when D ≥ 4. This is another example to show the advantages of 
the proposed method. To make full use of the fault recognition capability of the proposed 
method, D should be set to 4 or higher in practice. It could be noted that the advantages of the 
proposed method over LDA-HMM  are more significant in simulation 2 than that in 
simulation 1 according to Tables 5 and 6. It is because the nonlinearity of the CUT is stronger 
in simulation 2 than that in simulation 1. This further proves that the methods in [21] are not 
fit for the diagnosis of the incipient faults in nonlinear analog circuits. 

In the two experiments above, the proposed method shows good incipient fault diagnosis 
capability which is better than that of LDA-HMM, the neural network and the wavelet 
processing. It could be noted that the proposed method can diagnose both linear faulty 
components such as resistances, capacitors and nonlinear faulty components such as 
transistors. The conclusion can be drawn from the analysis of the different analog circuits 
above. 

 
5. Conclusions 
 
   This paper uses a novel method to extract the incipient fault features in a nonlinear analog 
circuit. In the paper, we have derived an explicit subband Volterra model and constructed 
incipient fault features with the fractional correlation method. Using the observation 
sequences made up of the constructed incipient fault features, the HMM are trained and the 
incipient fault diagnosis in nonlinear circuits can be completed well. Simulation results show 
that this new scheme is more efficient than the existing methods. It is worthwhile noting that 
the proposed method is universal for nonlinear analog circuits. 

Since calculation of the subband Volterra series and fractional correlation functions can be 
implemented with small hardware overhead, it is easy to use the proposed method to diagnose 
the incipient faulty parts in mixed-signal circuits. This provides a novel way to solve this kind 
of problem. 

The proposed method achieves a significant improvement for the LDA-HMM [21] in 
analog circuits. However, considering the nonlinearity will increase the complexity of 
computation. Hence, it is an interesting issue to analyze the relations between improving the 
fault diagnosis capability and reducing the complexity of computation, which will be 
investigated in our future research work. 
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