
 
Metrol. Meas. Syst., Vol. XVIII (2011), No. 4, pp. 543-554

________________________________________________________________________________________________________________________________________________________________________________ 
Article history: received on Sept. 9, 2011; received in revised form on Oct. 14, 2011; accepted on Nov. 20, 2011; available online on Dec. 
12, 2011. 

 

METROLOGY AND MEASUREMENT SYSTEMS 

Index 330930, ISSN 0860-8229 
www.metrology.pg.gda.pl  

 
 
REAL TIME PC IMPLEMENTATION OF POWER QUALITY MONITORING 
SYSTEM BASED ON MULTIHARMONIC LEAST-SQUARES FITTING 
 
Andrei S. Ardeleanu1), Pedro M. Ramos2) 
1) “Gheorghe Asachi“ Technical University of Iaşi, Faculty of Electrical Engineering, Energetics and Applied Informatics, 21-23 Professor 
Dimitrie Mangeron Blvd, 700050, Iaşi, România (a.ardeleanu@ee.tuiasi.ro) 
2) Instituto de Telecomunicações, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, 
Portugal (�pedro.m.ramos@ist.utl.pt) 
 

Abstract 

In this paper, an algorithm that monitors the power system to detect and classify power quality events in real 
time is presented. The algorithm is able to detect events caused by waveform distortions and variations of the 
RMS values of the voltage. Detection of the RMS events is done by comparing the RMS values with certain 
thresholds, while detection of waveform distortions is made using an algorithm based on multiharmonic 
leasts-squares fitting. 
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1. Introduction 
 

Given the fact that increasingly more electrical equipment can cause electromagnetic 
disturbances and is sensitive to these phenomena, real time power quality monitoring has 
become, in recent years, an important subject of research. It is estimated that costs of wastage 
caused by poor power quality in Europe exceed 150bn.€ per year [1] which reinforces the 
necessity of efficient, cost-effective, real time power quality monitoring. 

Power quality can be defined as “the concept of powering and grounding sensitive 
equipment in a manner that is suitable to the operation of that equipment” [2] or, according to 
the International Electrotechnical Commission (IEC) as “characteristics of the electricity at a 
given point on an electrical system, evaluated against a set of reference technical parameters” 
[3]. Therefore, it can be said that power quality represents a set of parameters regarding the 
continuity, magnitude and waveform shape of the power delivered to users. Depending on 
these parameters, power quality events can be classified into two major categories: (i) 
transients, waveform distortions (ii) short and long duration disturbances (interruptions, sags, 
swells, undervoltages, overvoltages). 

The appearance of these events in power distribution networks can cause harmful effects 
on power system devices and end users’ devices. Malfunctions, increase of losses, decrease of 
lifetime or even failures are some of the effects that poor power quality can cause on electrical 
devices. 

Power quality monitoring can be performed for different reasons: finding the cause of 
equipment malfunction and other power quality problems, obtaining statistical information 
regarding the performance of the equipment, obtaining information about the performance of 
the power distribution system (quality of service), analyzing system events that led to an 
interruption or blackout (to help prevent future events) or with permanent power quality 
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monitoring where no additional measurements are needed for troubleshooting (i.e., recorded 
data can be used to find the cause of a problem) [4]. 

In this paper, an algorithm that monitors the power quality and detects the events that are 
occurring in real time is presented. Real time monitoring can be used to find and solve issues 
that arise due to poor quality of the power.  Electrical devices both create and are sensitive to 
power quality events and in an environment where they have to work together, some of them 
can be influenced by the others and might function abnormally. By monitoring the quality of 
power in real time, connections can be found between the malfunction of a device and a 
certain event that occurred at that time. Knowing the cause of the problem, solutions can then 
be implemented to prevent future failures. 

Over the past years, several methods for detection and classification of power quality 
events in a power system were presented [5-17]. The wavelet transform is one of the most 
often employed signal-processing techniques used for power quality detection algorithms  
[5-11]. It can successfully detect high frequency events (transients) but in the case of slow 
disturbances, it performs poorly especially when the voltage variations are not sudden, but 
gradual. Other solutions include the combined use of wavelets and fuzzy support vector 
machines [18], wavelets and neural networks [19], pattern recognition [20], time-frequency 
representations [21] and digital filters [22]. 

Power quality algorithms can be implemented in devices based on digital signal processors 
(DSPs) [12-14] or on personal computers (PCs) [15-17]. DSP implementation is rather 
difficult and time consuming because of the verification process of the algorithm blocks 
working in real time and computational requirements are more difficult to comply with. 
Another issue is the limited amount of DSP internal memory available because, although 
DSPs can use external memory, access to it is much slower than the access to internal 
memory. In recent years, personal computers have become much faster and cheaper and so 
they are an important option for implementing algorithms. They are easy to upgrade to fulfill 
the increasing computational requirements and also have multiple in-built interfaces that make 
the communication with external devices or data reporting much easier. Data can be saved in 
different formats and transmitted to remote locations or displayed on an internet page to be 
separately available. Another important issue is the use of PCs with multiple core processors. 
Multiple cores can be used to speed up execution of multiple algorithms that can be executed 
in parallel without significant further development (for example in LabVIEW multiple core 
execution is embedded and straightforward to use).  

The system proposed in this paper, based on a personal computer, monitors the three 
phases of the power system in order to detect, in real time, power quality events. Data that 
contains the events is saved on the computer and also on a server as a web page for remote 
monitoring and dissemination of the project results. 

The classification of the events into transients and waveform distortions is done according 
to their duration and total harmonic distortion (THD) values. The THD values are calculated 
using the results of a multiharmonic least-squares fitting algorithm [23]. Short and long 
duration disturbances are detected by monitoring the RMS values of the voltage and 
comparing it with pre-defined thresholds. 

 
2. Algorithm Description 
 

Voltage measurements are made with three LEM LV 25-P closed-loop Hall effect 
transducers for the three phases of the power distribution network. The transducer outputs are 
sampled by a NI USB-9215A data acquisition board at a frequency of 10 kHz connected to a 
personal computer for processing. Continuous data segments are used by the power quality 
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algorithm to detect and process the events that are occurring and that may extend throughout 
multiple data segments. 

The block diagram of the proposed algorithm is presented in Fig. 1. The algorithm consists 
of two parts: one for events caused by changes in RMS values and the other for events caused 
by transients and distortions in the voltage waveforms. 
 

 
 

Fig. 1. Block diagram of the implemented algorithm. 
 
2.1. Detection of RMS events 
 
RMS calculation and detection of events (interruptions, sags, swells, undervoltages and 
overvoltages) is performed according to the IEC 61000-4-30 standard [3]. Normalized values 
of the voltage signal are used for computing the RMS values obtained at every half of period 
for one period of data. Zero-crossing points, determined by interpolation, are used to obtain 
the period of data necessary for RMS calculation. RMS estimation is obtained from 
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where NRMS is the number of samples per period, u[i] are the signal samples and d[i] is the 
sample duration.  

Since the RMS values are calculated for periods determined by interpolated zero-crossing 
points, the values of d[i] will change for the samples in the vicinity of zero crossings. In Fig. 2 
a simple example about RMS calculation near a zero-crossing is presented. u[1], u[2], u[3] 
and u[4] are four samples of the signal, u[z] is the determined zero-crossing sample and d[z1] 
and d[z2] are the durations between the zero-crossing and samples before (u[2]) and after 
(u[3]). 

The durations for samples u[1] and u[4], which aren’t in the vicinity of the zero-crossing, 
are the sampling period of the signal i.e., dt = 1/fs , where fs is sampling frequency. For 
samples u[2] and u[3] the durations are 
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Fig. 2. RMS calculation. 
 

If an interruption occurs, zero-crossing points cannot be used to determine the period of 
data and therefore the signal is assumed to have 50 Hz frequency (the nominal system 
frequency), for which the period of data is determined.  

The estimated RMS values are compared with an upper and lower threshold uRMS+ and 
uRMS- . If the RMS exceeds the upper threshold or drops below the lower threshold, an event is 
detected and depending on its duration and amplitude, is classified according to Table 1 [2]. 
 

Table 1. Classification of RMS events. 
 

 
 
 

2.2. Detection of transients and waveform distortions 
 

To detect transients and waveform distortions, the fundamental component of voltage u1 
must be separated from the other frequency components uε. This is achieved using four-
parameter sine fitting which is used to determine the parameters of the fundamental [24] 
 

 1normu u uε= + . (3) 
 

The residuals uε, obtained after removing the fundamental component, contain the possible 
disturbances. These residuals can take both positive and negative values, and therefore, their 
absolute values are processed using the morphological closing operation [25] with a 50 ms 
structuring element (equivalent to 2.5 periods of the fundamental nominal frequency) 
 

 50||closingu u sε= ⋅ . (4) 
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Morphological closing is used to eliminate the multiple crossings of the threshold that 
could belong to a single event [13]. The values obtained after the morphological closing are 
compared with a threshold to detect the events.  

Depending on their duration, events are classified as transients or waveform distortions 
(Table 2). An event with duration below 20 ms will be identified as a transient and an event 
that has a duration above 50 ms will be identified as a waveform distortion. Separating the 
events with duration between 20 ms and 50 ms into transients or waveform distortions is done 
by thresholding the total harmonic distortion of the event. If the event's THD is below a 
threshold, then it is classified as a transient, otherwise as a waveform distortion. 
 

Table 2. Classification of transients and waveform distortion. 
 

 
The THD values are calculated using the amplitudes of the harmonics (up to the 50th) 

determined by applying the multiharmonic least-squares fitting algorithm [23]. According to 
the Fourier series, the signal can be decomposed in a sum of sine waves of frequencies h×f, 
multiple of the fundamental frequency f, with amplitudes Dh and phases hφ  
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where Htotal is the total number of harmonics that reconstruct the signal, C is the dc 
component, f is the fundamental frequency and Ah and Bh are the in-phase and in-quadrature 
amplitudes of harmonic h. 

The multiharmonic fitting algorithm can estimate the amplitudes and phases only for the 
first H harmonics of the sampled signal. Considering that N samples y = [y1 … yn … yN]T are 
acquired at a fs sampling rate, this algorithm estimates the values of Ah, Bh, Ch and f which 
minimize the sum of squared differences 
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where ( 1) /n st n f= −  are the sample timestamps. 
Either using the DFT, the inverse of the average time between three consecutive zero-

crossings or other method for frequency measurement, an initial estimation of the 
fundamental frequency is made. This value is used to determine the initial harmonic 
parameters of the signal. A two-column matrix is built to calculate the harmonic parameters 
 

 ( )cos 2  sin(2 )hf hfπ π =  h t tW   (7) 
 

547



 
A.S. Ardeleanu, P.M. Ramos: REAL TIME PC IMPLEMENTATION OF POWER QUALITY MONITORING SYSTEM BASED ON... 

 
 

where h = 1 … H and [ ]1
T

n Nt t t= K Kt . 
For all the harmonics, the matrix used to determine C, Ah and Bh is 

 

 1[ ]h= 1 K K HD W W W . (8) 
 

The least-squares solution vector 
 

 1 1[ ]T
h h H HC A B A B A B= K K0x   (9) 

 

is determined by 
 

 ( ) 1
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The determined parameters are calculated according to the value of the initial estimated 
fundamental frequency. To improve the frequency estimation, an iterative process is started 
where, at iteration i, all the parameters ( )i

hA , ( )i
hB  and ( )if  are adjusted to minimize the 

least-squares error. The matrix used in the iterative process is 
 

 ( ) [ ]=i … …1 1 h HQ W W WD , (11) 
 

where Q is a one-column matrix used for frequency correction 
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At iteration i the estimated parameter vector is 
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After each iteration, the frequency estimate is updated according to 
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Using the new values of ( )i
hA , ( )i

hB  and ( )if  the iterative process continues until the 
absolute frequency changes are smaller than a threshold value. 

In the iterative version of the multiharmonic fitting algorithm, the correction of frequency 
and harmonic parameters is done by introducing the element Q (see (12)) and an iterative 
process. In the non-iterative version of multiharmonic fitting algorithm the frequency is 
determined using the four-parameter sine fitting algorithm [24]. 
 
3. Improving the power quality detection algorithm 
 

In order for the algorithm to be able to detect and classify events in real time, it must be 
able to perform all the waveform analysis within the time corresponding to the segment of 
data acquired. During the implementation of the algorithm, problems arose in terms of 
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reducing the time necessary to compute the multiharmonic least-squares fitting and choosing 
a suitable length of the data segment to be acquired. 

To reduce the computing time of the multiharmonic algorithm three approaches were 
considered: (i) determine matrix (11) which will be then the subject of operations: transpose, 
multiplication and inversion which corresponds to step by step implementation of (14); (ii) 
calculate the pseudo-inverse of matrix (11) and multiplying the result with the signal matrix, 
because 
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is the pseudoinverse of ( )iD ; (iii) directly calculating ( )( ) ( )Ti iD D  and 

( )( ) TiD y  after which the inversion and multiplication are applied. In this case, the fact is 

taken into account that the resulting matrix of ( )( ) ( )Ti iD D  is symmetric below the main 
diagonal. This  approach was improved by calculating only the elements on or above the main 
diagonal and the  elements below the main diagonal were later copied from the elements 
above the main diagonal. The size of these two matrices does not depend on the number of 
processed samples.  

The execution time of these three approaches for the iterative multiharmonic least-squares 
fitting (MHLSF) can be observed in Fig. 3 and for the non-iterative multiharmonic fitting in 
Fig. 4, in both cases as a function of the number of samples in each segment.  

As it can be seen, the fastest approach is to calculate the matrix and after that applying the 
further operations step by step. Also, between the iterative and non-iterative algorithms the 
non-iterative one is, as expected, faster. This is because a smaller matrix is used in the process 
but mostly due to the number of iterations required in the iterative version of the algorithm. 

 

 
 

Fig. 3. Execution time for iterative MHLSF algorithm. 
 

 
 

Fig. 4. Execution time for non-iterative MHLSF algorithm. 
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The next step for improving the algorithm is to select an adequate length for the segment of 
data so the algorithm can perform all the analysis required to identify and classify, in real 
time, the power quality events. The system is set to acquire all the data available, but never 
less than the minimum segment length. The algorithm was tested for different values of the 
minimum segment length and the actual size of the acquired segment was registered while the 
algorithm performed its analysis for detecting power quality events (Fig. 5). 

 

 
 

Fig. 5. Evolution of data segment size for 2 hours. The algorithm failed for 40 000, 50 000 and 75 000 samples 
per segment as can be seen from the sudden and irrecoverable increase in data segment size. 

 
As can be seen in Fig. 5, for data segments larger than 30 000 samples (3 seconds of data), 

the size of the data segments remains approximately constant for a period of time, after which 
it begins to increase until the system fails. This increase corresponds to detection of an event 
whose processing is large enough to request such a computational effort from the algorithm, 
that it cannot keep up with the increased backlog of acquired data. 

For segments of data smaller than 40 000 samples, increases in data segment sizes can be 
seen (they correspond to detection of events), but after a short time the size of data segments 
returns to the minimum value set. This means that, although the next segments were larger 
than the minimum defined size, the algorithm was able to process the additional samples in 
the next segments fast enough to recover the delay. Therefore, it can be said that the algorithm 
is stable for data segments whose size is below 40 000 samples. Taken into account these 
results, 20 000 samples (2 seconds of data) was chosen as the size of the data segment to be 
analyzed by the algorithm. 
 
4. Measurement results 
 

The system described in this paper is used to monitor the three phases of the power system 
to detect and classify the events that are occurring. Threshold uRMS+ was set at a value of 1.1 
pu, uRMS- at 0.9 pu, closTHR at 0.08 pu and THDTHR at 0.03.  

In Fig. 6, a distortion of 121.7 ms duration and 0.114 pu maximum amplitude is shown. 
The values obtained from the morphological closing operation (Fig. 6A) are compared against 
the preset threshold value of 0.08 pu to find the start and end of the event. For this particular 
example the start is detected at t = 208.2 ms when the values rise to 0.09 pu from 0.079 pu 
and the end at t = 329.8 ms when the values fall from 0.08 pu to 0.739 pu. Considering this 
information, the time instants when the morphological closing values cross 0.08 pu are 
determined by interpolation and are then used to calculate the duration of the event. During 
this distortion the maximum amplitude of 0.114 pu is recorded at t = 279.2 ms. In Fig. 6B, the 
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zoom of the event start can be observed. Before the start, the waveform is beginning to distort 
but only after the starting point the distortion becomes more pronounced.  

 
Fig. 6. Distortion event. A represents the result of the morphological closing operation applied to the signal’s 

residuals with a structuring element of 50 ms and B is a zoom of the voltage waveform at the start of the 
distortion event.  

 
In Fig. 7, a transient event of 1.73 ms duration and 0.478 pu amplitude can be observed. 

The value obtained with morphological closing (Fig. 7A) exceeds the threshold value from 
t = 200 ms (from 0.033 pu to 0.112 pu) until t = 201.6 ms (from 0.081 pu to 0.074 pu). The 
maximum amplitude is recorded at t = 200.2 ms. In Fig. 7B, the zoom of the transient event is 
shown where it can be observed, at the beginning of the event, the first spike that corresponds 
to the maximum value previously mentioned. 

 

 
Fig. 7. Transient event. A represents the result of the morphological closing operation  

applied to the signal’s residuals with a structuring element of 4 ms and  
B is a zoom of the voltage waveform at the start of the transient event. 

 
In Fig. 8, a sag event of 211 ms duration is shown, during which the voltage amplitude 

dropped to a minimum of 0.75 pu. The correlation between the drop of the calculated RMS 
values (Fig. 8A) and a decrease of the amplitude of the voltage (Fig. 8B) can be observed. 
The event starts at t = 210 ms and ends at t = 420 ms, during that time the RMS values 
decrease to a minimum value of 0.75 pu near t = 360 ms. 
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Fig. 8. Sag event. A is the evolution of the RMS values of voltage waveform during a sag event and B is the 

voltage waveform during a sag event. 
 

An RMS event can occur anywhere in the acquired segment of data, meaning that the 
amplitude of the fundamental does not remain constant during that segment of data. Because 
the four-parameter sine fitting determines an average value of the fundamental component 
over the all segment of data, the residuals obtained after separating the fundamental 
component can cause the system to detect false transients or waveform distortions (Fig. 9). 
For segments of data without events, the amplitudes of the closing signal have values below 
0.08 pu. However, in the example given in Fig. 9, because of the RMS event, those values are 
much higher and the algorithm will detect a waveform distortion which does not exist. 
Because of this, whenever a transient or waveform distortion is detected during a RMS event, 
a warning message will be recorded into the file that contains the information about the 
respective event (waveform distortion or transient) indicating the occurrence of a RMS event 
during the same time period. 

 

 
Fig. 9. Signal's reconstruction and closing signal at a RMS event. A represents the result of the morphological 
closing operation applied to the signal’s residuals with a structuring element of 50 ms and B is the original and 

reconstructed signal. 
 
5. Conclusions 
 

In this paper, the implementation of an improved algorithm for power quality monitoring is 
presented. RMS events are detected by analyzing the RMS values of the voltage calculated at 
a rate of a half of period for one period of the signal in accordance with IEC 61000-4-30 [3]. 
Interpolation was used to find the zero crossings of the signal which improved the accuracy of 
the determined RMS values. For transient and waveform distortion detection, the fundamental 
component was separated from the normalized voltage signal, thus obtaining a residual signal 
which was used for event detection. The absolute values of the residuals were processed using 
morphological closing to facilitate event detection. Detected events whose durations were less 
than 20 ms were classified as transients and the ones whose duration was more than 50 ms 
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were identified as waveform distortions. Between these limits, the separation between 
transients and waveform distortions was made using the THD values. In order to calculate 
THD values, the multiharmonic least-squares fitting algorithm was used. As this was the 
algorithm with higher computational requirements, three different proposed implementations 
were compared to select the fastest implementation. Also, between the iterative and non-
iterative implementation of the multiharmonic algorithm, the non-iterative one was found to 
be the quickest, because of the smaller matrix used and because it is non-iterative. 

Next, the ideal length of data segment had to be found for which the algorithm could 
perform all the analysis needed for event detection in real time. For this, the algorithm was 
tested for different minimum sizes of data segments, from which the value that ensured proper 
operation was selected. 

In the end, an algorithm for monitoring, detection and classification of power quality 
events in real time was successfully implemented. The system is fully operational for real 
time monitoring and the detected events are uploaded to a web server and are available at 
http://gim.lx.it.pt/fct57708/events/. 
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