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Abstract 

This paper considers a method for indirect measuring the vertical displacement of wheels resulting from the road 
profile, using an inverse parametric data-driven model. Wheel movement is required in variable damping 
suspension systems, which use an onboard electronic control system that improves ride quality and vehicle 
handling in typical maneuvres. This paper presents a feasibility study of such an approach which was performed 
in laboratory conditions. Experimental validation tests were conducted on a setup consisting of a servo-hydraulic 
test rig equipped with displacement, force and acceleration transducers and a data-acquisition system. The 
fidelity and adequacy of various parametric SISO model structures were evaluated in the time domain based on 
correlation coefficient, FPE and AIC criteria. The experimental test results showed that inverse models provide 
accuracy of inversion, ranging from more than 70% for the ARX model structure to over 90% for the OE model 
structure. 
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1. Introduction 
 

This paper considers a method for reconstructing wheel movement according to the road-
load profile by means of an inverse, parametric data-driven model. The signal of the vertical 
wheel movement is required in semi-active suspension systems, which control the movement 
of the wheels via an onboard system, rather than the movement determined entirely by the 
surface on which the passenger vehicle is driving. The system, therefore, virtually eliminates 
body roll and pitch variation in many driving situations, including cornering, accelerating and 
braking [1]. This technology allows car manufacturers to achieve a higher degree of both ride 
quality and vehicle handling by keeping the tires perpendicular to the road when cornering, 
ensuring much higher levels of grip and control. An onboard computer detects wheel 
movement and body acceleration from sensors located throughout the vehicle. In addition, 
using data calculated by a “sky-hook” control technique, it controls the damping force of the 
hydraulic damper with the use of a mini servo-valve, which is used to bypass flow between 
internal chambers of the hydraulic damper. 

The road profile generates a kinematic displacement excitation to the tire, which is 
transferred through the wheel assembly (see Fig. 1) to the lower arm, and further to the 
bottom mount (bracket) of the hydraulic damper. A hydraulic damper consists of a piston 
moving inside a liquid-filled cylinder to which the fixing bracket is attached. The top-mount 
is a rubber bearing element attached to the piston and the body of the vehicle. The excitation 
to the vehicle body which is transferred through the entire path consists of equivalent stiffness 
and damping sub-systems, corresponding to the tire, the wheel hub fixture, the hydraulic 
damper, and the top-mount (Fig. 1). 
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Fig. 1. A schematic view of a McPherson front strut suspension system. 

 
     A typical semi-active system uses displacement sensors which measure the relative 
distance between the rod and the hydraulic damper housing using electro-mechanical (LVDT) 
sensors. The velocity signal is obtained by differentiation of the displacement signal. The goal 
of this paper is to perform a feasibility study of indirectly reconstructing wheel vertical 
movement, based on the force measurement above the top-mount by means of dynamic model 
inversion. In turn, the displacement sensor is replaced by a load cell sensor, in which the force 
is converted into an electrical signal through deformation of a strain gauge. The strain 
changes the effective electrical resistance of the wire (e.g. four strain gauges in a Wheatstone 
bridge configuration). The electrical signal output is typically of the order of a few millivolts 
and requires calibration and amplification. This kind of sensor is a low-cost alternative to 
displacement sensors which are highly sensitive to dirt. The proposed approach was validated 
in the laboratory environment using road signals and a servo-hydraulic excitation system. 
     The structure of this paper is as follows. The second section presents the theory of model 
inversion and its underlying assumptions, as well as relevant aspects of system identification 
theory. The third section provides the results of experimental studies performed with the use 
of a servo-hydraulic test rig, while the last section discusses the results of model inversion, 
and summarizes the contributions of this work to inverse modeling of mechanical structures 
and systems. 

 
2. Model inversion 
 
     This section provides a survey of the theory of model inversion and its applications 
towards predicting load by means of parametric models. The term ”inverse“ refers to the fact 
that the roles of the input and the output are exchanged, as opposed to the usual forward 
system structural dynamics problem. In this approach, the model is inverted to propagate the 
measured signal to obtain the input physical load. The graphical presentation of the inverse 
problem type can be found in Fig. 2. 
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Fig. 2. Inverse problem presentation. 
 
The methodology introduced here deals with a time-domain parametric approach to model 
inversion, the so-called dynamic correction/estimation, adopted mainly from control theory 
[2] and digital signal processing (DSP) theory [3]. 
     The procedure of inverting a model does not correspond to any physical phenomenon and, 
therefore, inverse models always have a tendency to be unphysical. As all physical systems 
have a time delay as well as limited bandwidth, an exact inverse advances the signal as a 
result of the delay and amplifies high frequency noise without any bound, if the bandwidth is 
not restricted to the upper frequency band of the inversing load. This phenomenon is the so-
called ill-posedness of the inversion related in this work to the inverse model stability and the 
bandwidth of the inverting load. Regularization techniques have to be used to incorporate 
efficient constraints into the inversion process and make it more well-posed to correctly 
estimate the load up to a certain bandwidth, typically given by the frequency at which 
amplitudes of the signal and the noise are equal. A standard solution of the regularization 
problem is to use (i) a stabilization method as discussed later in this Section and (ii) low-pass 
‘noise’ filters. This fact suggests that the sampling rate of input and output signals has to be 
adapted to the maximal frequency of the reconstructed signal, although a very low sampling 
rate can result in severe aliasing. On the other hand, the sampling rate should allow the most 
important dynamics represented by vibration modes of the structure to be captured correctly. 
The significance of identified modes can be classified according to their energy levels while 
the structure is operating; which allows the most powerful ones to be selected and the 
sampling rate to be defined. 
     Reconstruction of the input of the system by inverting the system’s model is important in 
multiple applications. Input reconstruction is a technique frequently used in the Internal 
Model Control (IMC) strategies [4] to invert data-driven parametric models and compensate 
the dynamics of the tracking process [5, 6], or for metrological purposes [7, 8]. The literature, 
however, rarely addresses the problem of dynamic model inversion [9] based on data-driven 
parametric models of mechanical structures and systems. Nonetheless, the technique (model 
inversion) is applicable to the problems of load reconstruction in mechanical systems in order 
to modify the dynamics of a structure or a system and to achieve better performance, e.g. to 
lower the level of loading forces [10-12]. Load prediction in systems for which the force 
signal cannot be directly measured due to constructional constraints [13], as in the case of 
forces being exchanged by a wheel and the road or rail, is considered to be one of the most 
practical applications of the inverse approach [14, 15]. One of the other applications, 
proposed by [16], is reconstruction of the moving force of a bridge using the method of 
adaptive input estimation. 
     A model and its inverse can have either a parametric or a non-parametric representation in 
time or in the frequency domain. A non-parametric representation uses a frequency response 
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function (FRF), called the spectral transfer function, or an impulse response function, while 
parametric representation uses a transfer function or state-space equations. Examples of 
applications of the frequency response function method are discussed in [17], while an 
impulse response function method is presented in [18, 10]. The parametric approach is 
considered as more adequate for real-time applications [19, 13]. For example, the inverse 
problem of load reconstruction of vehicles moving on a bridge requires time-varying 
parametric models to properly reconstruct the load [20, 16]. This approach is supported by 
recursive techniques well-known in system identification theory, e.g. the recursive least 
square (RLS) or the Kalman-filter approach. This paper considers a transfer function approach 
which is adequate for tracking displacement-load changes in the time domain, however the 
proposed model is time invariant. The advantage of such an approach is the immediate 
possibility of its application as a hardware pole-zero filter. The model structure has to be 
parameterized to reflect the dynamics of the system under consideration. If any a priori 
knowledge is not available, a blind search procedure for the best structure can be applied 
using key measures of the model quality, e.g. best fit, AIC. 
     A linear and time invariant system with a single input and a single output (SISO) can be 
represented as an input-to-output discrete transfer function 
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The role of the inverse model is to filter the response of the system in order to reconstruct the 
unknown input. It can be shown that the transfer function inverse to G is the reciprocal of G, 
i.e. the ratio 
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Inversion requires all changes of the input signal u(z) of the direct model to be mapped on the 
output y*(z) of the inverse model. It can easily be seen that not all systems are invertible [6, 
21, 3]. The transfer function is strictly proper if the degree of the numerator is less than the 
degree of the denominator nB<nA, while it is proper if the degree of the numerator is equal to 
the degree of the denominator, i.e. nB=nA. If the degree of the numerator is greater than the 
degree of the denominator, i.e. nB>nA, the transfer function is called improper [21, 6]. 
Inversion of a strictly proper transfer function requires compensation of the degrees of the 
numerator to be carried out with the use of so-called a reference transfer function Gr(z).  
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where Td is the constant defining the quality of the inversion for signals of high-frequency 
content [21, 6, 11]. The inverse transfer function is unstable if at least one of the zeros of the 
direct transfer function is located outside the unit circle or inside the unit circle, for z-1 or z 
operators respectively. These zeros create a non-minimum phase transfer function, and 
hereafter are referred to as non-minimum phase zeros. The occurrence of non-minimum phase 
zeros is caused by one the following factors: (i) the sampling interval is too short, (ii) the 
discrete time delay is too long, or (iii) the number of poles, in comparison to the number of 
zeros, is too high [5]. It is clear from equations (2-3) that the inverse transfer function is 

494



 
Metrol. Meas. Syst., Vol. XVIII (2011), No. 3, pp. 491-500. 

  

unstable because non-minimum phase zeros become unstable poles. The inverse transfer 
function can be stabilized, however, by factorization of the numerator B(z), as shown in [3, 
12, 13]. 
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Zeros of the polynomial )(zBstable , called the stable polynomial, are exclusively the minimum 
phase zeros of the transfer function, while all the zeros of )(zBunstable , called the unstable 
polynomial, are respectively the non-minimum phase zeros. The advantage of such a 
stabilization method is the lack of phase error and delay, while the only disadvantage is a 
small gain error that is, moreover, negligible if the output signal consists of low frequency 
components [3].  

 
3. Experimental validation 
 

The experiment discussed in this section aims at reconstructing a road load signal by 
means of inverting a direct model. The parameters of the direct model were identified based 
on another realization of that signal. 

 
3.1. Measurement Conditions and Laboratory Hardware Configuration 

 
Experimental tests were performed on a servo-hydraulic test-rig Hydropuls® MSP25 

equipped with the IST8000 electronic controller. The test rig was used to load a hydraulic 
damper strut module (wheel hub fixture, hydraulic damper, spring and top-mount) and capture 
its dynamical characteristic, i.e. displacement vs. force. Data acquisition was performed with 
an 8-channel amplifier. The test rig is equipped with an oil supplying system (so called servo-
pack) that provides a pressure of 28 MPa at a flow-rate of 90 l/min. The actuator provides  
25 kN force at the rod, while the maximum stroke is 250 mm at the maximum achievable 
velocity of 2 m/s. The actuator rod is coupled to the adapter which transfers the force to a 
hydraulic damper mounted on a test rig. The main components of the servo-hydraulic system 
are the hydraulic actuator with the integrated displacement transducer in a piston-rod 
assembly (IST-Schenk) and a three-stage servo-valve system. The test rig is equipped with the 
PID-FF controller. The feed-forward (FF) section in this controller passes a proportion of the 
command signal to the controller output through a high-pass filter to block the command 
mean level. Different control settings are used depending on the type of the excitation signal. 
The excitation signal is converted into a voltage applied to the servo-valve which controls the 
amount of oil supplied to the chambers of the actuator. The road load data were used to 
simulate the ride conditions. 

 
3.2. Inversion procedure 

 
A block diagram of the procedure of inverting an SISO model is presented in Fig. 2. The 

initial step is the process of selecting an adequate model structure and an algorithm for 
estimating model parameters [11]. 
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Fig. 3. Block diagram representation of the model inversion procedure. 

 
The model structure is selected using the quality indicators of the direct and inverse 

models' fit to the data in the time domain. The selection process is supported by model quality 
measures and visual inspection as proposed in Table 1. 
 

Table 1. Criteria of model structure optimality. 
 

 
Criterion 
 

 
Measure 

 
Values 

Fit in the time domain Fit measure Reconstructed input (output of the inverse 
model) 

Fit in the time domain Fit measure Output of the direct model 
Statistical properties 
of model residuals 

FPE and AIC Residuals of the direct model 

Representation of 
modal properties 

Subjective evaluation Bode diagram and spectrum of residuals; 
both obtained from the direct model   

 
     The next step, estimation of the parameters of the selected model, is performed using the 
available input-output data, and a one-step-forward prediction of a direct model output is 
computed. If a priori information about the mechanical structure under consideration is 
unavailable or the structure is too complicated to be understood and correctly modeled using 
the first-principle approach, the adequacy of model structures is then evaluated by means of 
two measures, referred to in the literature as the Final Prediction Error (FPE) and the Akaike 
Information Criterion (AIC). The more accurate the model is, the smaller the values of the 
FPE and the AIC measures. Additionally, in order to detect the presence of abnormalities in 
the time/frequency domain, a visual inspection of the Bode plot of the input-to-output transfer 
path and the spectra of model residuals (the disturbance-to-output transfer path) was 
performed for each identified model structure. Analysis of the extensive quantity of such 
visual indicators (not presented here due to lack of space) indicates no presence of 
abnormalities. The major criterion for model order selection is, however, the comparison of 
the fit quality of the reconstructed inputs. The purpose of selection is to obtain a suitable 
inverse linear filter capable of providing the best possible reconstruction of the input signals 
with respect to the optimality criteria listed in Table 1. 

Estimation of the parameters of the selected model, that is, estimation of the coefficients of 
the polynomials A(z-1), B(z-1), etc. from random data, was obtained from the Matlab System 
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Identification Toolbox [22]. A linear time-invariant (LTI) system, mapping a single input onto 
a single output (SISO) and in discrete time-steps, is represented by difference equations [23]. 
These equations take the form of (3), where G(z-1) and H(z-1) are discrete-time transfer 
functions containing adjustable coefficients and represent the input-to-output dynamics and 
the disturbance-to-output dynamics, respectively. The transfer functions G(z-1) and H(z-1) are 
rational functions of the operator z-1 that take the form shown on the right-hand-side of the 
equation [23] 
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     The polynomials A(z-1), B(z-1), C(z-1), D(z-1) and F(z-1) are used for model 
parametrization. Special cases of the LTI SISO general model structure (3) are listed below as 
predefined model structures using the function notation to state their characteristic structural 
numbers [23]; 
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where nA, nB, nC, nD and nF are polynomial orders and k is the input-to-output delay [23]. In 
case of an n-DOF system, for example the ARX(nA=2⋅n, nB=2⋅n) model structure can be 
used for the purpose of modeling the force-to-acceleration mapping, or the ARX(nA=2⋅n, 
nB=2⋅n-1) for the purpose of modeling the force-to-displacement or force-to-velocity 
mapping [24]. 

Stabilization of the polynomial B(z-1) is an important stage of the inversion procedure and 
is achieved by reflecting the roots of B(z-1) that have a magnitude greater than unity with 
respect to the boundary of the unit circle (i.e. to the inside of the unit circle) [3]. The 
polystab(.) function of the Matlab Signal Processing Toolbox is used for this purpose [22]. 
Upon stabilization, the model becomes invertible directly if the degree of the numerator of the 
input-to-output transfer function G(z-1) is equal to the degree of its denominator, i.e. if the 
model is proper. If this is not the case, a reference transfer function [11] has to be used to 
compensate for the lower order of the numerator. The performance of the inversion algorithm 
can be evaluated either by visual inspection of the plot or by analyzing Pearson’s product-
moment correlation coefficient. 

 
3.3. Identification and Inversion of the SISO Model 

 
Inversion of the model was conducted according to the scenario shown in Fig. 3. The 
measured random displacement is required at the input of a direct model and the measured 
force is required at its output. The strategy implemented for optimizing selection of the model 
structure is the systematic search for a set of model structures that would satisfy the criteria 
listed in Table 1. For instance, a set of ARX(nA,nB,k) models were processed according to 
the procedure depicted in Fig. 3 in a manner ensuring that the criteria given in Table 1 were 
satisfied. The orders of polynomials were chosen so that { }16,6,5, K∈nBnA , while the delay 
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k was fixed to the unity. The selected model structures are listed in Table 2 with results 
presented therein. 

 
Table 2. Results of the input reconstruction and model fit to data. 

 
 
Model 

Direct model 
Fit % 

Reconstructed 
displacement 
Fit % 

FPE AIC 

BJ(13,7,7,15,1) 69% 88% 0.000556 -7.4917 
OE(17,15,1) 78% 94% 0.053531 -2.9275 
ARX(17,15,1) 69% 76% 0.000534 -7.5353 
ARMAX(10,10,6,1) 68% 78% 0.000553 -7.5005 
PEM(8,8,8,8,8,1) 67% 79% 0.000551 -7.5035 
ARARX(15,13,6) 59% 72% 0.000547 -7.5673 

 
     To compare the results of direct measurements and those obtained with the procedure of 
model inversion, the correlation coefficients were computed for the random excitation. 
Besides Table 2, the exemplary results of reconstruction of displacement are presented 
graphically in Figs. 4-5 in the time domain. Before data processing, the signals were re-
sampled down from 10 kHz to 1 kHz. 
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Fig. 4. Results of reconstruction of the displacement signal in the time domain with use of the ARX(17,15,1) 

model. 
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Fig. 5. Results of reconstruction of the displacement signal in the time domain with use of the OE(15, 17, 1) 

model. 
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4. Summary 
 
The paper presents the case studies of inverting data-driven models of the suspension strut 

module using parametric SISO models. Experimental validation tests conducted on the servo-
hydraulic test rig equipped with a data acquisition system, confirm that the methodology 
proposed herein, i.e. parametric system identification and model inversion, is valid. Results 
provided by data-driven parametric model structures are sufficient to constitute foundations 
for implementing them as inverse models in the form of fixed-point filters on a DSP platform. 
The model implemented in such a form is capable of filtering the responses of a mechanical 
system into a reconstructed input performing indirect measurements of the wheel 
displacement. 
 
Nomenclature 
 
i - discrete time 
A, B, C, D, E, F - polynomials used for the representation of the transfer function 
nA, nB, nC, nE, nF - order of polynomials used for the representation of the transfer function 
z - operator of the Z transformation 
e - disturbance variables in the system or its model 
u - input variables in the system or its model 
y - output variables in the system or its model 
G(z), G(z-1) - discrete transfer function 

 
Abbreviations  
 
AIC – Akaike Information Criterion 
ARMAX – AutoRegressive Moving Average with eXogeneous input 
ARX – AutoRegressive with eXogeneous input 
BJ – Box-Jenkins 
DSP – Digital Signal Processing 
FPE – Final Prediction Error 
FRF – Frequency Response Function 
LTI – Linear and Time-Invariant model/system 
OE – Output Error 
PEM – Prediction Error Method 
SISO – Single-Input Single-Output 
LVDT – Linear Variable Differential Transformer 
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