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Abstract

Local geometric deviations of free-formrfaces are determined as normal deviations of measurement
from the nominal surface. Different sources of errors in the manufacturing process result in devi
different character, deterministic and random. The different nature of geomeiatiatessmay be the basis
decomposing the random and deterministic components in order to compute deterministic geometric
and further to introduce corrections to the processing program. Local geometric deviations constitute
processThe article suggests applying the methods of spatial statistics to research on geometric de\
freeform surfaces in order to test the existence of spatial autocorrelation. Identifying spatial corre
measurement data proves the existerfca systematic, repetitive processing error. In such a case, the
modelling methods may be applied to fitting a surface regression model representing the det
deviations. The first step in model diagnosing is to examine the model redmtuthle probability distributio
and then the existence of spatial autocorrelation.
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1. Introduction

Machine parts composed of free-form 3D surfaces are more and more often designed. In
designing, producing and measuring such surfaces, CAD/CAM techniques are applied. The
accuracy inspection consists in digitalizing the workpiece under research, followed by
comparing the obtained coordinates of the measurement points with the CAD design (model)
[1, 2]. There are generally two types of measurement data acquisition methods: contact
measurement using a coordinate measuring machine (CMM) and non-contact measurement
by using an optical/laser scanner. Numerically-controlled CMMs equipped with a ball-end
touch trigger or scanning probes, are mainly used for workpiece validation in manufacturing.
As a result of the measurement, a set of discrete data is obtained in the form of the coordinates
of the measurement points. The values of geometric deviations of the free-form surface, or
normal deviations of measurement points from the nominal surface, are performed
automatically in software of coordinate measurement machines for each measurement point in
the UV scanning option.

Measurements of real surfaces produce only their approximate views. The approximation
degree depends on the accuracy of the applied measuring method. Among numerous factors,
which have influence on the accuracy, connected with the tool and the measurement
environment, there are factors which can be rationally adjusted — such measurement
parameters as the sampling interval and the diameter of the measuring tip. Both these factors
have a strictly specific impact on the range of information included in measurement data,
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determine the least boundary length of elementary irregularities represented in measurement
data, because they cause a geometric-mechanical filtration of surface irregularities. The
parameter which has a decisive influence is the one which causes a longer wave to be passed.
Literature sources suggest different principles of selecting the appropriate tip radius in
relation to the sampling interval, most often in the ratios of 1:2, 1:1 and 2:1 [3, 4, 5].

Contact measurements take into consideration deviations of specific wavelengths, which
have not been filtered by the ball tip because the ball tip functions as a mechanical-
geometrical low-pass filter. Thus, the scope of information included in measurement data
depends on the ball tip diameter. In measurement planning, the choice of the dicohi¢ter
ball tip should be made first, according to the measurement purpose and the range of
information required on the characteristics of the measured surface [4]. Adopting for
measurement the principle suggested in the literature sources pertaining to measuring
roundness deviations [3, 6], which states that the boundary wavelength is comparable to the
tip radius value, means that in the case of using a stylus tip ofL mm in diameter,
irregularities of the length values greater than 0.5 mm are passed; in the case of a stylus tip of
d = 2 mm in diameter, irregularities of the length values greater than 1 mm are passed,
The second important factor which influences measurement results is the sampling Thterval
in the case of scanning a free-form surface with a CMM along a regular grid, which is directly
connected to the number of measurement points. In choosing the sampling interval, the
principles used in tests on measurement signals, derived from Nyquist theory should be taken
into account [7]. The theorem connected with this theory states that the sampling frequency,
which is defined as the reciprocal of the sampling intefyvakeds to be at least twice as high
as the spectrum limit frequency. This particular measurement parameter also results in a
mechanical-geometrical filtration, adopting the interval value of 1 mm means that the
obtained measurement data contain information of elementary surface irregularities of more
than 2 mm in length. Adopting the principles cited in literature [3, 8] to the selection of
parameters of contact measurement, at the samalfifrexjual to 2:1, choosing a ball efg
2 mm in diameter, and the 1 mm sampling interval, the boundary length of elementary
irregularities represented in measurement data amounts to 2 mm.

Geometric deviations of surfaces are attributed to many phenomena that occur during
machining, both deterministic and random in character. These phenomena with their
consequent machining errors can be described in the space domain. In coordinate
measurements of free-form surfaces, spatial data is obtained which provides information on
the processing and on geometric deviations in the spatial aspect. Deterministic deviations are
spatially correlated, however lack of spatial correlation indicates their spatial randomness.
Calculating solely the values of geometric deviations does not provide much information,
neither with regard to the surface properties nor to the course of the machining process.
Deviations of random values may be spatially correlated which is reflected in their
deterministic distribution on a surface and is indicative of the existence of a systematic source
in the course of processing. The different nature of geometric deviations may be the basis for
decomposing the random and deterministic components [9]. Information concerning
deterministic deviations might be used for diagnosing the course of objects processing and
subsequently for correcting the processing program.

To research on geometric deviations of free-form surfaces, the methods of analyzing
spatial data may be applied [9]. These methods make it possible to quantitatively qualify the
spatial interdependence of the given data. Identifying spatial autocorrelation of geometric
deviations proves the existence of a systematic, repetitive processing error. In such a case, the
theoretical spatial modelling methods [10, 11] may be applied to fitting a surface regression
model representing the deterministic deviations. In engineering practice advanced CAD
software may be applied for surface modelling. In the article the patch surface interpolation
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and the shape modification were performed with the use of Rhinoceros software, which is a

geometric modeller based on the NURBS method [12, 13]. The first step in model diagnosing

is to examine the model residuals for the probability distribution and the existence of spatial

autocorrelation. The computations were made in the R-Gui program, which is a software

environment for statistical computing and graphics. The described tests were carried out on a
free-form surface obtained in the milling process.

2. Measuring spatial autocorrelation

Spatial autocorrelation refers to systematic spatial changes. In general, positive
autocorrelation means that the observed feature values in a selected area are more similar to
the features of the contiguous areas than it would result from the random distribution of these
values. In the case of negative spatial autocorrelation, the values in the contiguous areas are
more different than it would result from their random distribution. Lack of spatial
autocorrelation means spatial randomness.

In order to test the existence of spatial dependence, Moran’s statistic for a given variable is
applied; it can be used to analyzing spatial data of both normal and unknown probability
distribution [10, 11]. The spatial effects range may be researched by means of analyzing the
structure of spatial dependence — by testing and selecting weighting matrices defined
according to different criteria. Structure of weights is described in [10, 11].

To research on geometric deviationgand model residualg), the following need to be

determined [9]:&, — geometric deviation at each measurement paint,arithmetic mean of

geometric deviations at — measurement pointg; — weighting coefficients, elements of
weighting matrices reflecting spatial relations betweeand ¢, .

A spatial weighting matrix defines the structure of the spatial neighbourhood. The matrix
measures spatial connections and is constructed in order to specify spatial dependence. One of
the possible dependence structures is assuexgdieighbourhood along a common border,
neighbourhood within the adopted radius or within the inverse of distance. In research on
geometric deviations, it is most suitable to make the spatial interrelations dependent on the
distance between the measurement points, in particular on the inverse of the minimum
straight-line distance.

As a result of scanning, the coordinates of the points distributed on the surface along a
regularuxv grid are obtained. The distance betweeniitreandj-th point, according to the
Euclidean metric, is as follows:

o =0r =) +(y=y)" @
where:

- X, ¥ — i-th point coordinates;

X, ¥ —j-th point coordinates;

d; — distance between tl¢h and jth measurement point.

If it is assumed that the dependence between the data values atdhgooints decreases
when the distance increases, this relation can be described in the following way:

Qj :qjifa (2)

where:
- ¢ =0fori=};
- f— oonstant (B 1).
The spatial autocorrelation coefficient has the following form:
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i=1j=1
- & —geometric deviation at the measurement point;

- & —arithmetic mean of geometric deviations atmeasurement points.

While examining residuals of a model, tlae geometric deviation values in the (3)
dependency should be replaced with the values of the model regdcatalsese points.

After having determined the coefficielhtthe null hypothesis of no spatial autocorrelation
at the assumed significance level needs to be verified, examples were shown in [11]. The
distribution moments can be determined both at the assumption that the data come from the
normal distribution population and at the assumption that they come from the population of an
unknown probability distribution. When the number of localities is large, it is reasonable to
use the normal approximation. Assuming a normal probability distribution for geometric
deviations, the expected vallgl) and the variance var)(lare calculated using the
appropriate formulae from [10, 14]. Verifying the hypothesis of no spatial autocorrelation in

the data set under research, the test statistids, -£(1)/y/vafl) needs to be determineld,

— the coefficient evaluated from the experimental sample (Eq. (3)), and compared with the

limit z, value for the adopted significance level [14]z K z,, there is no reason for rejecting

the null hypothesis, and in that case the null hypothesis is accepted. In tests on geometric
deviations, accepting the null hypothesis means that the tested deviation set is spatially
random.

3. Spatial modelling

In order to create a surface model representing deterministic deviations of the surface, the
NURBS method was applied. The NURBS surface opttlegree in the direction and the
degree in the direction is a vector function of two variables in the form of [15, 16]:

35w N (ON R,
Suv) =0 . @)
22w N (UN;4(v)

i=0j=0

Points R; make up a two-direction control points grid (Fig. 1) on which the surface patch is
lofted (n,m are the numbers of control points in thandv directions respectivelyly; are
the weights, whileN;,(u) and N4(v) are the B-spline basis functions defined on knot vectors
in the form of:

U :{ Q..0Upg e Mg ij}, (5)
p+l p+l

Vv :{ Qe OV oo Vequ ,1...1}, (6)
— —
q+L a+l

where: r = n+p+l and s = m+g4.
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Fig. 1. A NURBS surface patch.

The input data in surface interpolation is a set of pajtgk = 0O, ...,r, s =0, ..., 1),
forming a spatial grid of (r¥)x(t+1) points. In the case under concern, the data were
obtained from coordinate measurements during which a two-direction grid of measurement
points was obtained (Fig. 2a).

a)

Fig. 2. Surface approximation: a) grid of approximated points; b) isoparametric curves;
c) surface patch.

In developing the geometric model, the method of global surface approximation was used.
The process is carried out in two stages [13, 17]:

— in the first stage, a series of curves located on the surface patch (isoparametric curves) are
created. These curves are approximated on the subsequent rows of the pre-set points of
one of the parameterization directionsorv. A spatial grid of control points is obtained
this way, with the points defining the isoparametric curves described above (Fig. 2b);

— in the second stage, coordinates of surface control points are determined. It is performed
by approximating curves through the control points of the curves which were
approximated earlier. The approximation is made in the other parameterization direction.
The surface is lofted on the series of curves, which was determined earlier. The obtained
control points define unambiguously the surface patch (Fig. 2c).

After the approximation stage was completed, shape modification iteration of the created
surface patch was applied in the subsequent stages. These operations aimed at obtaining an
adequate model of the regression surface, which would represent deterministic deviations.
The model adequacy was tested with the use of methods of analyzing spatial data in research
on spatial autocorrelation of the model residuals. The residuals of an adequate model,
determined at measurement points, formed a set of random local deviations. In this case,
popular procedures were applied of changing the NURBS surface shape, namely [12, 18]:

— rebuilding the knot vectors, which influences a change in the number of control points in
the u and v directions);

— changing the degrees of B-spline base functions.
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o
O - control points + - approximated points

Fig. 3. Curve shape modification through rebuilding the knot vector: a) 35 control points, 31 internal knots;
b) 20 control points, 16 internal knots; c) 15 control points, 11 internal knots.

The effects of changing the shape of the modelled curve with the use of the process of
rebuilding the knot vector are illustrated in Fig. 3. In the first case (Fig. 3a), the curve goes
exactly through all the pre-set points (interpolation of fﬂeiegree curve through 33 points).
Reducing the number of knots results in reducing the number of control points of the curve. A
less-complex shape can be obtained this way (Figs 3b and 3c). The surface shape modification
is performed according to the same rules which are applied to change the shape of the curve.

4. Experimental investigations

The experiments were performed on a free-form surface of a workpiece made of
auminium alloy with the base measuring 50 x 50 mm (Fig. 4), obtained in the milling process
using a ball-end mill 6 mm in diameter, rotational speed equal to 7500 rev/min, working feed
300 mm/min and zig-zag cutting path in tK¥ plane. The measurements were carried out
under laboratory conditions on Global Performance CMM (PC-DMIS softwareg MRE +
L/333 um, equipped with a Renishaw SP25M probe, 20 mm stylus with ball tips of 2 mm and
4 mm in diameter).

Fig. 4. CAD model of the surface.

The surface was scanned in two stages (without appliadius compensation) with the
UV scanning option (the option built in PC-DMIS software). In the first stage 2500 uniformly
distributed measurement points were scanned from the surface (50 rows x 50 columns) with
the use of a ball end tip of 2 mm in diameter. In the second stage 625 points were scanned (25
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rows x 25 columns) using a ball tip of 4 mm in diameter. In both cases the process of fitting
the data to the nominal surface was then carried out in which the least square method was
applied and all the measurement points were used; the measurement process was subsequently
repeated and geometric deviaticnwere computed [19]. In this way the position deviations

were minimized. All the measurements were repeated tree times; the tables and plots present
mean values of the obtained results.

The amount of information included in measurement data depends on the ball tip diameter
and sampling interval (grid size). Both these factors cause in fact a geometrical-mechanical
filtration of surface irregularities (Section 1). In the first case the observed data include
information on surface geometric deviations of the lengths exceeding 2 mm, in the second
case — deviations of lengths exceeding 4 mm.

4.1. Measurement results

The obtained measurement data are presented in a graphical form. Fig. 5a shows a spatial
plot of the £ deviations with reference to theandy nominal coordinates and Fig. 5b the
probability plot of deviations for 2500 measurement points. Fig. 6 shows the maps of
deviations for both cases. The statistical parametersets are compiled in Table 1.

a) b)
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Fig. 5. Plots of geometric deviations for 2500 measurement points: a) spatial plot ved$yipltnee;
b) probability distribution.

Table 1. Statistical parameters gf geometric deviation sets.

Number of meas. pts. 2500 625
Sampling grid 0.01ux0.01v | 0.02ux0.02v
Sampling intervall [mm] ~1mm ~2mm
Tip diameterd [mm] 2 4

Std. deviation [mm] 0.011 0.009
Mean [mm] -0.012 -0.010
Minimum & [mm] -0.037 -0.035
Maximum £ [mm] 0.020 0.013
Form/waviness dev. [mm] 0. 057 0.048

The deviation plots indicate that the measurement points contain both the deterministic and
the random component and that the contribution of the deterministic component is greater
(Fig. 5, Fig. 6). Comparing the maps for different sampling parameters, significant differences
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in irregularity shapes and the numbers of observed details can be seen. The values of the
observed shape/waviness deviations also vary among each other (Table 1).

20
X [mm]

X [mm]

Fig. 6. Maps of geometric deviations: for 2500 measurement points (left)
and for 625 measurement points (right).

For the tip end ofl = 2 mm in diameter, the mean and minimum values of the observed
local geometrical deviations were smaller. This tip went deep into the surface irregularities
and reached surface points which were located lower than the points established with the use
of the tip end ofl = 4 mm. Moreover, the scatter of the values of the observed deviations was
greater. The form/waviness deviation determined in measurements with the use of the tip end
of d = 2 mm was greater by approx. 0.009 mm.

For both data sets tests on spatial autocorrelation of geometric deviations were
subsequently carried out [9]. The relationships between the deviations were made dependent
on the reciprocal distances determined from the formula (2). The elements of weight matrices
defining the dependencies between deviations at pioaridj were calculated from formula
(2) assuming the value of the constant as3. A fragment of the weight matrix is shown in
Fig. 7a. The spatial autocorrelation coefficientas determined and the null hypothesis on
the lack of geometric deviations autocorrelation was verified, assuming a randomized
probability distribution, with the significance level= 0.01 (the upper point of a standard
normal distributiorz, = 2.34). The computations were performed in the R-Gui program. Fig.
7b presents the print screen image with the computation results for the case of 2500
measurement points

a) b)

Moran's I test under randomisation

I% Data Editor
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afdata: deviations

col2 col3d cold cols
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0.09500525
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0.09500525
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0.01210366
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0.01210366

0.09755839

0

T lale oo

weights: weights2500

Moran I statistic standard deviate = 77.6964, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
v|Moran I statistic
0.58449805459

Variance
0.0001183867

Expectation
-0.0004001601

Fig. 7. a) The top left corner of th& matrix. b) Print screen image with computation results.
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The null hypothesis of the lack of spatial autocorrelation was rejdcted,84;z = 77.69;
Z,= 2.34;z > z,. The computation results show a clear positive autocorrelation of local
geometrical deviations, as well as the results for 625 measurement points. In both cases it is
possible to predict the values in the neighbouring points on the basis of the deviation value at
any point.

The test results indicate the existence of systematic processing errors. Further, the spatial
model of deterministic geometric deviations needs to be determined and their sources of
influence minimized, and/or the processing program needs to be corrected.

4.2. Fitting models of geometric deviations

In both cases the regression surfaces which represent deterministic deviations, were
modelled. In the subsequently constructed models, the number of control points and the
surface degrees in both directions (Section 3). The model residuals were examined each time,
and the maximum and minimum values, arithmetic mean (should @ probability
distribution (the distribution normality was verified with the Kolmogorov-Smirnov test), and
the | spatial autocorrelation coefficient (3) were determined. In all statistical tests a
confidence leveP = 0.99 was adopted. The model with the smallest number of control points
and the lowest surface degrees in ¥handY directions, for which the model residuals met
the criteria of a normal distribution and of spatial randomness, was adopted as an adequate
one. In the case of 2500 measurement points, the criterion was met for the number of control
points amounting to 31x31, the number of surface degrees being 3x3. In the case of 625
measurement points, the criterion was met for the number of control points amounting to
16x16. Fig. 8 presents the probability distributions of model residuals.

a) b)
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Fig. 8. Probability distributions of model residuals: a) for 2500 points; b) for 625 points.

Table 2. Modelling and computation results.

Number of meas. pts. 2500 625
Control points numbe 31x31 16x16

of deterministic surface

Surface degrees 3x3 3x3
Deterministic deviations [mm] -0.035 + +0.012.035 + +0.010
Autocorrelatlc_)n coefficienl 0.04 0.04

for model residuals

Test statisticz

for model residuals 221 1.86
Random deviationg [mm] -0.008 + +0.006 -0.010 ++0.013
Mean of random dewe [mm] 0.000 0.000
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The spatial autocorrelation coefficiemt®r model residuals were determined, and the null
hypotheses on the lack of geometric deviations autocorrelation were verified, assuming a
normal probability distribution, with the significance level= 0.01. The computation and
modelling results for both cases are compiled in Table 2. The computation results show a lack
of spatial autocorrelation of model residuals. The determined models represent deterministic
deviations, whereas the residuals of the models constitute the random deviations.

a) b)

[ 0,00 10 20 30 40
0,01 X [mm]
I 0,01

Fig. 9. Maps of the deterministic deviations: a) for 2500; b) for 625 measurement points.

Fig. 9 presents maps of the deterministic deviations; the maps and spatial plots for the
random deviations are shown in Fig. 10 and Fig. 11.

Fig. 10. The map and the spatial model of the random deviations for 2500 measurement points.
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Fig. 11. The map and the spatial model of the random deviations for 625 measurement points.

Observing the maps of the deterministic deviationg.(8), the effect of rejecting random
deviations is visible. The surface modelled using 2500 points contains surface irregularities of
visibly shorter lengths and is more complex than the surface modelled with 625 points. The
value of the deterministic component is greater for the first surface, whereas the random
component, i.e. the scatter of model residuals, is smaller for this surface (Fig. 9, Table 2). The
complexity of the modelled surfaces depends on the number of control points, connected in
fact with the number and distribution of measurement points.

Random deviations (Fig. 10 and Fig. 11) of both cases differ significantly in the lengths of
irregularities. This is strictly connected with measurement parameters, the number of
measurement points and the ball tip diameter. Different effects of surface irregularity
decomposition are clearly visible.

5. Conclusions

On the basis of the results of measuring geometric features of surfaces, it is possible to
infer the course of the machining process. The observed geometric deviations are caused by
machining inaccuracies. Phenomena of a systematic, deterministic character result in forming
geometric deviations of the same character on the object surface. These deviations can be
minimized by removing their sources from the process and/or, in the case of numerically
controlled machining, by correcting the machining programme, using the data obtained from
measurements. Free surfaces are produced with the use of multiaxis machining centres, and
most often measured with NC CMMs. Geometric deviations of free-form surfaces, evaluated
by coordinate measurements, are of a spatial character, and it is the same with the character of
the sources of these deviations in the machining process. The article suggests a method of
creating a model of a surface representing determined deviations, applying spatial statistics
and geometric spatial modelling. The method consists in iterative modelling of the surface of
the determined deviations and in testing the spatial randomness of the model residuals at the
consecutive iteration stages. The method makes it possible to reject deviations of a random
character from the measurement data set. The obtained surface model might be a basis for
correcting the machining programme. The result of modelling depends, among others, on the
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adopted measurement parameters such as the diameter of the measuring tip, and, above all,
the sampling interval (and thus the number of measurement points).

The results of the research carried out with the use of the developed method for the
measurement data of a milled surface showed that separate random geometric deviations
comprised between ¥ and %2 of the deviations obtained as a result of measurement, depending
on the sampling parameters used in measuring.
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