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Abstract

The paper concerns the problem of treatment of thiersygic effect as a part of the coverage interval associated
with the measurement result. In this case the knostesatic effect is not corrected for but instead is treated as
an uncertainty component. This effect is characterizgdtwo components: systematic and random. The
systematic component is estimated by the bias andathgom component is estimated by the uncertainty
associated with the bias. Taking into consideration these two components, a random variable can béthreated
zero expectation and standard deviation calculatedalogomizing the systematic effect. The method of
randomization of the systematic effect is based ofatéefi-Gaussian distribution. The standard uncertainty,
being the basic parameter of the systematic effect, bmacalculated with a simple mathematical formula. The
presented evaluation of uncertainty is more ratiohahtthose with the use of other methods. It is useful in
practical metrological applications.
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1. Introduction

A systematic effect having two components, systematic and random [1], may be treated as
a part of the coverage interval. In this case, the known systematic effect is not corrected for
but instead is treated as an uncertainty contribution. The first component of the systematic
effect is estimated by the bias and the second component is estimated by uncertainty
associated with this bias. The new random variable can be created with zero expectation and
the calculated standard deviation bases on the information connected with the bias and its own
uncertainty.

2. Coverage interval

The concept of a coverage interval is connected with the probability distribution of the
possible values for the measurand. In general, the statistical coverage interval is defined as
“an interval for which it can be stated with a given level of confidence that it contains at least
a specified proportion of the population” [1]. A specific definition in metrology of the
coverage interval is “an interval containing the value of a quantity with a stated probability”
[2]. There are two options: probabilistically symmetric coverage interval and shortest
coverage interval. In case of symmetrical distribution of the possible values for the measurand
there is only one interval, symmetric around its expectation:

lo = [Viows Yhighls 1)

whereyiqw andynigh are the endpoints of the coverage interval corresponding to the values
G Y(a) andG™Y(a + p), which are thex and a + p quantiles of distribution functio(7) of
the measurand. The usual assumptiorref2,5 % andg = 95 % gives the coverage interval
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defined by the 0,025 and 0,975 quantiles. With reference to the classical expression of
expanded uncertainty lIJcan be written as:

b=[y -U, y+U. 2)
Satisfying: .
[ 9(mydn=p, ©)

whereg(n) is a probability density function of the measuragdjs its estimate ang is a
coverage probability.

3. Systematic effect as a random variable

The systematic effect contains the b&sas the estimate of systematic error, and its
standard uncertainty(e). We assume that the probability attributed to the random component
of the effect is a normal distribution, and we assuase?2 corresponding to a coverage
probaility p = 95 % (Fig. 1). Creating a new random variable with zero expectation we can
determine a symmetrical coverage interval

U=|e+2Li(e). (4)

Thus, definedU gives the expanded uncertainty of randomized systematic effect. The
distribution of this random variable is &R distribution.

A
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Fig. 1. Randomization of systematic effect.
4. RIN distribution

The RIN distribution is a convolution of two distributions, rectangular and normal. The
probability density function of RNdistribution is given by:

'r1+«/§|' 2
£

Orn (77) = eXp[_] d. %)
2J6rnr ”[ér 2
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Fig. 2. Probability density function for convolution of rectangular and normal distributions with different values
for parameter.

The probability density functions of [RI distributions are characterizing, in general, a
constant value surrounding expectation and its slopes are Gaussian functions (Fig. 2).
Therefore, sometimes this distribution is called a flatten-Gaussian distribution [3]. The range
of constancy of the probability density function depends on parameteat is a ratio of the
standard deviatiomwr of a rectangular distribution to the standard deviatigrof a normal
distribution:

r=J% (6)

On

The parameter of RCN distribution may be estimated by the formula connecting the bias
ard the standard uncertainty associated with this bias:

2.
r, :iJrl. @)
3-u(e)
For simple convolution of the rectangular and normal distributions, wh§|5e|e|/\@
ando, =u(e), itis:

i
~J3Bu(e ®)

The above formulas are different, but formula (7) better approximates the parameter of
randomized systematic effect and may be also used to characteriZé\tlgsRibution.

The coverage factor for the (R distribution should be calculated numerically. The
coverage factor values corresponding to the coverage probgb#it5 % are presented in
Table 1 [47]. The coverage factor can also be calculated as for the trapezoidal distribution

from the formula [810]:
3
Ky = r2—+1(1+ru—2\/ru(1—p))- ©)

u
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The difference between coverage factor values calculated fortdelRtribution and the
trapezoidal distribution corresponding to coverage probability 95 % are presented in Tab. 2.
For each relationship betweermndu(e) the differences are minimum.

Table 1. Coverage factégy corresponding to coverage probabifity 95 % for limits of ratia,.

fy fy ly
Kan up to value Kan up to value kan up to value
1,96 0,5090 1,85 1,6410 1,74 3,1930
1,9t 0,698¢ 1,84 1,738( 1,72 3,441(
1,94 0,8240 1,83 1,8390 1,72 3,7300
1,93 0,9280 1,82 1,9460 1,71 4,0740
1,92 1,0220 1,81 2,0600 1,70 4,4925
1,91 1,1110 1,80 2,1820 1,69 5,0235
1,90 1,1980 1,79 2,3135 1,68 5,7350
1,89 1,2840 1,78 2,4560 1,67 6,7760
1,88 1,3700 1,77 2,6120 1,66 8,5975
1,87 1,4580 1,76 2,7845 1,65 [
1,86 1,5480 1,75 2,9765

Table 2. Standard uncertainty and coverage factor of randomized systematic effect.

elu(e) 'y Krn kr U Ur=U /kgn ug=U/kr UrMcMm)

0,1 1,0667 1,91 1,90 2,1 1,10 1,10 1,10
0,2 1,1333 1,90 1,90 2,2 1,16 1,16 1,15
0,3 1,2000 1,89 1,90 2,3 1,22 1,21 1,21
0,4 1,2667 1,89 1,89 2,4 1,27 1,27 1,28
0,5 1,3333 1,88 1,89 2,5 1,33 1,32 1,32
0,6 1,4000 1,87 1,88 2,6 1,39 1,38 1,39
0,7 1,4667 1,86 1,88 2,7 1,45 1,44 1,44
0,8 1,533 1,8€ 1,87 2,€ 1,51 1,4¢ 1,5C

0,9 1,6000 1,85 1,87 2,9 1,57 1,55 1,56
1 1,6667 1,84 1,86 3,0 1,63 1,61 1,62
2 2,3333 1,78 1,81 4,0 2,25 2,21 2,23
3 3,0000 1,74 1,77 5,0 2,87 2,83 2,85
4 3,6667 1,72 1,74 6,0 3,49 3,46 3,47
5 4,3333 1,70 1,71 7,0 4,12 4,08 4,10
6 5,0000 1,69 1,70 8,0 4,73 4,71 4,72
7 5,6667 1,68 1,69 9,0 5,36 5,34 5,35
8 6,3333 1,67 1,68 10 5,99 5,96 5,98
9 7,0000 1,66 1,67 11 6,63 6,59 6,61
10 7,6667 1,66 1,66 12 7,23 7,21 7,23

5. Standard uncertainty of the randomized systematic effect

The standard uncertainty of the randomized systematic effect is given as:

U |d+2-u(e
Ug=—=—1——7, 10
where the coverage factor:
K=k =~ k. (11)
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The differences between standard uncertainty values calculated for the randomized
systematic effect with the use of the coverage fattgraindkr are also presented in Table 2.
This differences are minimum and do not influence the value of standard uncertainty as it is
expressed with two significant digits. In Table 2 the values of standard uncertainty are
presented with three significant digits to show the difference between them. The above-
mentioned differences between them do not exceed two percent.

The standard uncertainty of the randomized systematic effect may also be calculated with
the use of the Monte Carlo method. One can do computation from the formula [2]:

2 1 Y _\2
Uzmcmy = mZ(y. - Y) . (12)
4=

The valuesy; are drawn from the BN distribution, having parameter= r, given by
equation (7). The results @kwmcm) computation are presented in Table 2. The differences
betweenur values obtained by the analytical method amgicmy values obtained by the
numerical method do not exceed one percent.

The random number generator dfiNRdistribution may be built with the use of two simple
ranrdom number generators. The random numbers are drawn through the formula:

_rz+z
NEE

wherez; andz, are random variables having standardized rectangular distribution R(0, 1) and
standardized normal distribution N(O, 1).

(13)

6. Comparison with literature approach

The approach presented in literature413] most often gives the formula for calculating
the standard uncertainty associated with the systematic effect:

u =&+ (8. (14)

12
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elu(e)

Fig. 3. Standard uncertainty of systematic effect calculated with two approaches.
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In this approach the value of the biags treated as a standard uncertainty. Because the
bias is always evaluated with a given uncertainty, the formula (14) also contains the standard
uncertaintyu(e) associated with the estimation eaf This formula binds the systematic and
random components of the systematic effect, expressing standard uncextdikeythe law
of uncertainty propagation. When we calculate the uncertainty from this formula the value of
u_ is a nonlinear function (Fig. 3).

In the approach presented here, the calculatians afreates practically a linear function.

The growth of the value of the systematic effect component causes the proportional increase
of standard uncertainty of this effect. Thus, the relation between the standard uncertainty,
given by (10), and systematic effect components is practically linear.

7. Practical example

Practical use of the proposed randomization may be applied to interpretation of the
information contained in the calibration certificate. In this certificate the bias is given with
associated uncertainty. The reported expanded uncertainty of measurement is stated as the
combined standard uncertainty multiplied by the coverage f&cto?, which for a normal
distribution corresponds to the coverage probability of approximately 95 %.

We can use a simple example concerning the measurement of a roller diameter by a
calibrated micrometer. The calibration certificate of a measuring instrument states the bias in
the whole measuring range iugh with an associated uncertainty ofith. We can assume
that the bias is the estimate of the maximum systematic error and its absolute value may be

equal or smaller thangm for any measured diameter. In this C@e 0,003 mm ancu(e) =

0,001 mm, because expanded uncertaloity 0,002 mm andk = 2. The randomizing B
distribution of that systematic effect has a parameter3, given by formula (7). From Table
1 we can readtry = 1,74 or from the formula (9) we can calculéte= 1,77. The standard
uncertainty, given by formula (10), isgr=0,0029 mm. In the case of trapezoidal
approximation the standard uncertaintygs= 0,0028 mm, because a trapezoidal distribution
has a smaller standard deviation than tHeN Rlistribution for the same parameter of a
randomized quantity. This uncertainty we can also call type B and then it may be uwgitten
Ug.

The roller diametei@20h7 (h7 is a symbol of diameter tolerance) was measured with an
average of the observatiors= 19,990 mm, as the estimate of the diameter and with the

experimental standard deviation of the meﬁ) =0,0017 mm, as the standard uncertainty.

This uncertainty is called type A, then= s(a) In accordance with the law of uncertainty
propagation the combined standard uncertainty is given as:

u (d)=y U + 4. (15)

The combined standard uncertainty may be an estimate of standard uncertainty associated
with the measurement result of the roller diameter obtained using a calibrated micrometer:
u(d) = uc(d) = 0,0033 mm. We can assume normal distribution attributed taztbacertainty
and the RN distribution attributed to theis uncertainty. The coverage interval may be
calculated by the analytical method described in publicatior [#sing this method we can
obtain: digw = 19,9838 mm andligy = 19,9962 mm. According to the recommendation of
document [2] we can report the final result of measurement as:

d = 19,9900 mmuy(d) = 0,0033 mm
95 % coverage interval = [19,9838; 19,9962] mm
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or we can present it in traditional form:= (19,9900 + 0,0062) mm. We can compare this
result with the calculation using the Monte Carlo method [2]:

d = 19,9900 mmuy(d) = 0,0034 mm
95 % coverage interval = [19,9837; 19,9963] mm

or we can present it in traditional forith= (19,9900 + 0,0063) mm. The measurement result
is the same when we round the standard uncertainty to one significant digit

d = 19,990 mmy(d) = 0,003 mm
95 % coverage interval = [19,984; 19,996] mm

or express it in traditional fornd = (19,990 + 0,006) mm. The tolerance of the diameter
@20h7 isT = 21 um with the upper specification limit: @m and lower specification limit:
-21 pm, corresponding to a maximum permissible diameter edwal=20 mm and
minimum permissible diameter equiglin= 19,979 mm.

8. Conclusion

The systematic effect may be joined to the coverage interval of a measurement result. In
this case the systematic effect is treated as an uncertainty component and a random variable.
This random variable can be characterized by thN Ristribution. The RN distribution
cowvers two components of systematic effect, bias and uncertainty associated with this bias.
The calculations of standard uncertainty and coverage factor of the randomized systematic
effect are simple and can be easily implemented in practical application in metrology.

The literature approach does not assume the probability distribution for the systematic
effect. Thus, the standard uncertainty associated with the systematic effect can be calculated
only from the law of uncertainty propagation. The calculation presented above may be done
by the analytical method as well as the numerical method with the use of propagation of
distributions, recommended in [2]. Each method provides practically the same value of
standard and expanded uncertainty.
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