
 
Metrol. Meas. Syst., Vol. XVII (2010), No. 2, pp. 205-216 

____________________________________________________________________________________________________________________________________________________________________________________ 
Article history: received on Apr. 29, 2010; accepted on Jun. 4, 2010; available online on Jun. 16, 2010. 

 

METROLOGY AND MEASUREMENT SYSTEMS 

Index 330930, ISSN 0860-8229 
www.metrology.pg.gda.pl 

 
 
DSP-FPGA BASED REAL-TIME POWER QUALITY DISTURBANCES 
CLASSIFIER 
 
Zhang Ming , Li Kaicheng, Hu Yisheng  
 
Huazhong University of Science and Technology, Department of Electrical and Electronic Engineering, Wuhan 430074, Hubei Province, 
China (� zmcock@yahoo.com.cn, +86  027 8754 3628, likaicheng@mail.hust.edu.cn, hu_yisheng@powercipro.com) 
 

Abstract 

This paper describes a real-time classification method of power quality (PQ) disturbances based on DSP-FPGA. 
The proposed method simultaneously uses the results obtained in the application of a series of RMS values and 
the discrete Fourier transform to the power signal waveform.  A series of RMS values are used for estimation of 
the time-related parameters of  the  PQ disturbances and the discrete Fourier transform is used for confirmation 
of the frequency-related parameters of  the PQ disturbances. Without adding the computational burden, both the 
elementary parameters of the power signal and  the type of PQ disturbance are obtained easily. A simple and 
effective methodology for classification of nine typical kinds of PQ disturbances is proposed in this paper. Five 
distinguished time-frequency statistical features of each type of PQ disturbances are extracted. Using a rule-
based decision tree (RBDT), the PQ disturbances pattern can be recognized easily and there is no need to use 
other complicated classifiers. Finally, the method is also tested using both simulated disturbances and 
disturbances measured using an initial development instrument. Different experimental results show the good 
performance of this proposed approach. Real-time calculating time based on DSP is also taken into consideration 
to show the effectiveness of the proposed method. 

Keywords: Discrete Fourier transform, power quality disturbances, real-time classifier, RMS, rule-based 
decision tree. 
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1. Introduction 

 
Power Quality (PQ) has recently become a major concern to both electric suppliers and 

electric customers. One reason is that PQ has been being disturbed heavily with the increasing 
number of polluting loads (such as non-linear loads, time-variant loads, fluctuating loads, 
unbalanced loads, etc.), the other is that intelligent electrical devices have put forward more 
rigorous requirements for PQ. Therefore, PQ urgently needs to be monitored and improved. 
However, it is the key problem how to extract feature vectors automatically and classify PQ 
disturbances accurately from massive PQ data [1].  

Several methods for detection and classification of PQ disturbances have been published. 
Some of them focus only on one particular type of disturbance [2], others aim to cover a 
wider range of disturbances [3, 4]. The wavelet transform  is one of the most often employed 
signal processing algorithms [5−7]. It has been applied for detection of transients  as well as 
sags or swells. However in the latter case it exhibits several drawbacks arising from weak 
response to sags and swells of a certain shape (especially when the voltage drops and 
increases are not sudden but gradual). In this paper, the features of each PQ disturbance are 
extracted from  a series of RMS values and the discrete Fourier transform (DFT) to the power 
signal waveform. 

The classification of PQ disturbances is often based on artificial neural network (ANN) [8], 
expert system (ES) [9] , fuzzy logic(FL) [10] , super vector machines (SVM) [11], a hidden 
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Markov model (HMM) [12], and so on. In this paper, using a rule-based decision tree (RBDT) 
[13], the PQ disturbance pattern can be recognized easily and there is no need to use other 
complicated classifiers. 

Most of PQ equipments that measure PQ indexes do record current and voltage RMS  
values, power values, power factor, frequency, harmonics from 2nd to 50th order and THD  
(Total Harmonic Distortion) [14, 15]. Unfortunately, due to the complex algorithm of the 
classification of PQ disturbances, it is a time-costly task for traditional equipment and must be 
implemented in a PC instead of  the embedded device [16, 17]. 

The aim of this paper is to develop a real-time instrument that is suitable for automated 
real-time classification of PQ disturbances and the other functions. The emphasis is therefore 
on low computational burden required to perform the necessary calculations. In this paper, 
what is proposed in this work is the development of a method that can measure all elementary 
parameters of the power signal, plus the classification of  PQ disturbances, which means all 
the functions of PQ analysis. A new method suitable for real-time detection and classification 
of various types of PQ disturbances are described. Special stress is laid on their suitability for 
the implementation in a DSP-FPGA-based measuring instrument. The method proposed in 
this paper does not add much of computational burden based on the traditional equipment, 
drastically improving the performance of the previous equipment and increasing the accuracy 
in the classification of  PQ disturbances. 

The paper is organized as follows. The feature extraction method is stated in Section 2. 
Then the design of RBDT is proposed in Section 3. Testing study results are presented in 
Section 4. At last, the conclusions are given in Section 5. 

 
2. RMS and FFT based feature extraction 
 
2.1. PQ disturbances 
 

PQ disturbances that may occur in a power system can be extremely different in their 
characteristics. IEEE Std. 1159-1995 [1] describes categories of PQ disturbances and their 
typical characteristics. In this paper, the types of disturbances investigated are seven single 
disturbances and two complex disturbances, including the voltage sag, swell, interruption, 
harmonic, notch, flicker, oscillatory transient, sag with harmonics and swell with harmonics.   

 
2.2. RMS and FFT based feature extraction 
  

A good recognition system should depend on the features representing the PQ disturbances 
in such a way that the differences among the PQ disturbances’ waveforms are suppressed for 
the waveforms of the same type but are emphasized for the waveforms belonging to different 
types of PQ disturbances. The following five distinct features inherent to different types of 
PQ disturbances have been extracted [3, 10, 18, 19]. 

C1: It represents the per unit (p.u.) RMS value of the fundamental component (50Hz power 
system).  

                                                    2 ( [1]) / ,n
nV abs V N=                                                       (1) 

 

where Vn is the RMS value of the fundamental component in the n-th cycle, N the number of 
samples in one cycle, n is the order number of the signal cycles, n = 1,2, ⋅⋅⋅, 10, abs(⋅) gives 
the absolute value of the argument, ][n kV  is the DFT for the samples contained in the n-th 
cycle defined as:  
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where v[i]represents the sampled input signal, i = 0,1,2,⋅⋅⋅,L-1 with L the length of the signal. 
Assumed Rn is the rated RMS value of the normal signal, then the C1 is as following:  
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For example, to distinguish the interruption from the sag, the following rules are used: if 
1 1.1,C ≥  then the disturbance is swell; if 0.9 1 0.1,C≥ ≥  then the disturbance is sag; if 

1 0.1,C <  then the disturbance is interruption; δ is the threshold used to distinguish notch  
from noise, 01.0≤δ , δ−≤ 11C  for notch [20]. 

C2: It represents the variation rate of the RMS values of the power signal, which is defined 
as:   

                                                           1 / ,n n
n rms rmsS V V T−= − ∆                                                (4) 

 

where nS  is the alteration of two adjacent cycles of the RMS values, T∆  is the time interval, 
n

rmsV  is the RMS value of  the n-th cycle, which is defined as: 
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Generally, there are two classes of PQ disturbances: stationary disturbances and non-
stationary disturbances [1]. If ε>S , then the disturbance is non-stationary (sag, interruption, 
swell, oscillatory transient), then C2 = 1, for stationary (harmonic, notch, flicker) C2 = 0. ε is 
the threshold from noise, here 01.0=ε . 

C3: It represents the oscillation number of the RMS variations of the power signal, which 
is defined as: 

 

                                                 ))(( s
rms

s
rms VmeanVrootRN −= ,                                           (6) 

 

where RN is the oscillation number of the RMS variations, root(⋅) returns the number of roots 
of the argument, mean(⋅) returns the mean value of the argument, s

rmsV  is defined as an array 

composed of n
rmsV .  

                                                     [ ]1021
rmsrmsrms

s
rms VVVV L= .                                                (7) 

 

For example, to distinguish the flicker from the other disturbances if 3≥RN , then 13=C , 
else C3 = 0. 

C4: It represents the THD factor. If a disturbance happens, the frequency components will 
change greatly, and the additional frequency components derive from the disturbance. The 
THD in the n-th cycle  is expressed as:  

 

                                        { } ]1[])[( 1
)2/(int

2

2n VkVabsTHD
N

k
n ∑

=

= ,                                      (8) 

 

where int(N/2) equals N/2 if N is even, and (N – 1)/2  if N odd. So, the following rule is used: 
if 05.0≤nTHD  [7], then C4 = 0, else C4 = 1. 
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C5: It represents the LHD (lower harmonic distortion) factor. The LHD in the n-th cycle is 
expressed as:  

                                             { } ]1[])[( 1
11

2

2n VkVabsLHD
k

n ∑
=

= .                                         (9) 

 

For the three-phase power system, the most common harmonics are 5-th, 7-th and 11-th 
harmonics, which mean the lower frequency harmonics. Moreover, the frequency components 
associated with notch can be quite high [1]. Whereas the frequency components  the 
following rule is used: if nnn LHDTHDLHD −≥ , then C5 = 1, else C5 = 0. 

According to the above description and the PQ disturbances definition, the features of the 
nine types of disturbance are shown in Table 1, which can be the rules of identifying the PQ 
disturbance type. 

 

 

   Fig. 1. Power quality classification tree.   
 
 

Table 1. Disturbance signal features. 

Type of signal 
The values of features 

C1 C2 C3 C4 C5 

Normal signal 1 0 0 0 Not used 

Sag (≥0.1)&(≤0.9) 1 0 0 Not used 

Interruption ≤0.1 1 0 0 Not used 

Swell (≥1.1)&(≤1.8) 1 0 0 Not used 

Harmonic (≥1-δ)&( ≤1+δ) 0 0 1 1 

Notch ≤1-δ 0 0 1 0 

Flicker Not used 0 1 Not used Not used 

Oscillatory transient Not used 1 0 1 0 

Harmonic + sag (≥0.1)&(≤0.9) 1 0 1 1 

Harmonic + swell (≥1.1)&(≤1.8) 1 0 1 1 
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3. RBDT for Detection and Classification 
 

According to Table 1, the disturbance classification tree is achieved, shown in Fig. 1. The 
decision tree is layered and based on a series of rules from Table 1. Using the decision tree, 
the above seven single disturbances and two complex disturbances can be recognized. 

A decision tree is a tree data structure consisting of a root node, decision nodes and leaf  
nodes. A leaf identifies a class value. A decision tree classifies the type of the PQ 
disturbances by sorting them downwards the tree from the root to some particular leaf node, 
which identifies the PQ disturbance type. A decision node specifies a test over one of the 
features, which is called the feature (in our application we have five features, which describe 
the PQ disturbances) selected at the node, and each branch descending from that node 
corresponds to one of the possible values of the selected feature.  

Each case is specified with values for a collection of features as described in the previous 
section. A divide-and-conquer strategy is used to construct the decision tree, wherein each 
leaf node in the tree is only associated with a set of features such as C1,C2,C3,C4,C5. So the 
decision tree model can be decided previously. Associated with each case is a label 
representing the name of a class. Classes are denoted by the names such as voltage sag, swell, 
interruption, harmonic, notch, flicker, oscillatory transient, sag with harmonics and swell with 
harmonics.   

In Fig. 1, for a case, the decision tree makes comparisons at most 5 times (sag with 
harmonics and swell with harmonics), or at least 3 times (flicker), or on the  average 4 times 
of comparison (sag, swell, interruption, harmonic, notch , flicker, oscillatory transient). So the 
expectation of the comparing times is as follows: 
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4. Tests and Discussion  
 

In this section, the performance of the proposed method for detection and classification of 
PQ disturbances is evaluated first. The artificial PQ signals with disturbances are simulated 
using Matlab/Simulink programs. These disturbance waveforms are generated at a sampling 
rate of 256 samples/cycle for a total of 2560 points (10 cycles). In 100 cases of each 
disturbance, the program can be used to set different parameters such as the magnitude of the 
disturbance, its duration and its position within the period. 

Fig. 2 shows the normal signal and above the nine types of power disturbance signals, 
respectively.  

Each simulation lasts 10 cycles. In order to make values comparable for different cases, the 
amplitudes of the input signals have been normalized by dividing by the RMS value of the 
signal over the window being analyzed. All of the feature values are calculated on a sliding 
one-cycle window, which consists of 256 sampling points. The used features of PQ 
disturbances, which include C1,C2,C3,C4,C5, are grouped into the input vectors of RBDT. A 
Matlab program does all of the processing, and the classification results are presented in  
Table 2. Simulation experiments show that the performance of this classification system is 
satisfactory when there is Gaussian white noise with SNR (signal-to-noise ratio) from 30dB to 
50dB. The average classification accuracy is 99%, 97.5%, 94% with SNR 50dB,40 dB, 30dB 
using the feature vectors that directly extract from the disturbance signal with noise, 
respectively. From Table 2, although the classification of PQ disturbances achieves above 
90% accuracy averagely with SNR 30 dB, the identification of the sag and notch  is sensitive 
to the noise, due to their same magnitude. 
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                        a) Normal signal                                                              b) Sag 

 
 

                      c) Interruption                                                         d) Swell 

 
 

    e) Harmonic                                                             f) Notch 
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                         g) Flicker                                                                h) Oscillatory transient 

 
 

                       i) Harmonic + Sag                                                  j) Harmonic + Swell 

 
 

Fig. 2. PQ disturbance signals. 
 

To evaluate the real-time performance of the proposed method, the hardware experiment 
has contributed to the initial design of a universal power quality test bench, which has the 
function of classifying PQ disturbances. 

 

 
 

Fig. 3. Block diagram of hardware configuration. 

211



 
Z. Ming et al.: DSP-FPGA BASED REAL-TIME POWER QUALITY DISTURBANCES CLASSIFIER 

A simplified block diagram of hardware configuration is shown in Fig. 3. This device 
applies DSP and FPGA and a simple peripheral circuit to realize the function of signal 
acquisition, processing and display. Fig. 4 shows the flow chart of the software. 
 

 

Fig. 4. Flow chart of the software. 
 
To implement the proposed method in the hardware device, both classification accuracy and 

real-time requirements need to be considered. Each type of PQ disturbances generated by the 
Fluke 61000A is tested 20 times at a sampling rate of 256 samples/cycle for a total of 2560 
points (10 cycles). Fig. 5 shows the connection of the test devices. 

 

     
 

Fig. 5. Connection of the test devices. 
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Fig. 6 shows two test cases of the classification of PQ disturbances in the device. Fig. 7 
shows the consuming time of DSP for the classification of the various types of PQ 
disturbances from 0.09s to 0.12s on the average. From Table 2 and Fig. 7, test results show 
that the proposed method achieves acceptable classification accuracy and meets the real-time 
requirements of real applications. 

 
                a) Sag + harmonic disturbance 
 

 
 
               b) Swell disturbance 

 
 

Fig. 6. Test cases of classification. 
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Fig. 7. Consuming time of DSP. 
 

5. Conclusions 
 

A novel method for detection and classification of PQ disturbances has been developed. 
The method detects voltage sag, swell, interruption, harmonic, notch , flicker, oscillatory 
transient, sag with harmonics and swell with harmonics. The initial stages of development of 
a power quality instrument are also described in this paper. Compared to common solutions 
which are usually based on wavelet transform, the proposed method is faster, simpler and 
more suitable for real-time monitoring of power systems. The proposed  method is tested 
using simulated signals with disturbances and using measured signals gathered from a Fluke 
61000A instrument. Test results show that the proposed method achieves acceptable 
classification accuracy and meets the real-time requirements. 

 
Table 2 Tests of disturbance classification. 

 

Type of 
signal 

SNR50dB SNR 40dB SNR 30dB 

Samples 
Misestimate 

times 
Samples 

Misestimate 
times 

Samples 
Misestimate 

times 

Sag 100 0 100 1 100 4 

Interruption 100 0 100 5 100 13 

Swell 100 0 100 1 100 4 

Harmonic 100 0 100 0 100 1 

Notch 100 2 100 6 100 14 

Flicker 100 3 100 4 100 5 

Oscillatory 
transient 

100 4 100 4 100 6 

Harmonic+sag 100 0 100 1 100 4 

Harmonic+ swell 100 0 100 1 100 3 

Mean accuracy 
(%) 

99 97.5 94 
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