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SOFT FAULT DIAGNOSIS IN ANALOG CIRCUIT BASED ON
FUZZY AND DIRECTION VECTOR

Abstract

A basic circuit theory of fault diagnosis for analog circuits with parameter tolerance is proposed in this
paper. The approach uses the direction vector of voltage increment in test nodes as a fault signature
for predefined faults. A linear equation is built to locate a faulty element. On the condition that the
component tolerances are taken into account, the concepts of direction vector and fuzzy analysis method
are combined together to analyze a parametric fault. Examples illustrate the proposed approach and show
its effectiveness.
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1. Introduction

Since the 1970’s, with the rapidly development of electric industry, testing and dia-
gnosis play an important roles for the industry to efficiently continue moving forward.
It is estimated in [1] that testing can account for up to 30% of the total manufacturing
cost in 1993. In [2], it is reported that 95% of the test cost in mixed-signal circuits is
expended in testing the analog parts. Therefore, the research on the diagnosis of ana-
log circuits has become one of hot topics. Many methods have been proposed for fault
diagnosis in analogue circuits [2-19]. It is popular to categorized those analog fault
diagnosis techniques as simulation-before-test (SBT) and simulation-after-test (SAT)
techniques [3-4]. The fault dictionary method [4,7], compared the circuit responses
associated with predefined the fault values in the dictionary to locate the faults, is
one of the most often used methods. In [8], an AC test was used to detect the fault.
The test frequency was selected by using a comprehensive fault model and sensitivity
information obtained from simulation on behavioral level. An algorithm in [9] based on
fault model used DC stimuli and detects the catastrophic fault. However, they were not
aimed at parametric faults caused by global process variations like mask misalignment
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and line width variations. In [10], single and multiple faults were detected based on
circuit sensitivity computation. In [11], incremental sensitivity is used to detect both
hard faults and soft faults and to analyze the observability of circuits. In [12], the
test frequency was selected with constrained linear programming to be a math tool.
In reference [13], by node-voltage sensitivity sequence dictionary, both hard and soft
faults of any component are detected. However, if the CUT is in normal state with
the influence of tolerance, the method is unable to identify the circuit’s state. In [14],
an approach to DC circuits uses a formula obtained on the basis of the Woodbury
expression to identify fault parameter. It analyzes a circuit with nominal parameters
and distinct excitations as well as measurements of some node voltages in a circuit
with perturbed parameters. In reference [15], an approach using the linear-programming
concept is proposed. Through checking the existence or absence of a feasible solution
it is stated whether there is a fault or not in the circuit is stated. However, when an
element changed heavily, the method is powerless. Reference [16] gives an approach
to combined sensitivity analysis and fuzzy analysis to diagnose soft faults in linear
analog circuits. By using membership function, the questions of test node selection and
fault diagnosis are handled at the same time. In [17], a comparison between different
techniques in the field of analog circuits is made, with applications. Reference [18]
focuses the attention on the sensitivity analysis from the diagnostic point of view. In
[19], authors take into account the optimal selection of the test frequencies with the
aim to localize the faulty element in the analog CUT.

In this paper, a basic circuit theory and a novel analysis method for analog circuits
with parameter tolerance are proposed. A relationship between the circuit parameters
and the measured voltage increments is established. An algorithm is presented so that
the theory can be applied to a circuit under test (CUT). For diagnosis of parametric
faults in a CUT with tolerance, a new diagnosis method which combines both direction
vector and fuzzy analysis is developed.

The paper is organized as follows. Section 2 presents some basic mathematic
definitions of fuzzy and fuzzy math expression in fault diagnosis. Section 3 provides a
diagnosis methodology, including the principle of direction vector method, the fuzzy
math expression in fault diagnosis with tolerance and determination of membership
function. In Section 4, two experimental results and comparison with another method
are given to show the effectiveness of the proposed method. Conclusions are summa-
rized in Section 5.

2. The Fuzzy Definition for Fault Diagnosis

The fuzzy set concept was originated by Zadeh [20-22]. Instead of taking on only
two values 0 or 1 depending on “included in” or “not included in” the set, the basic
idea involves defining a membership function for each element of the referential set.
The membership function takes its value in the interval [0,1], depending on the degree
of belonging to the set.
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2.1. Fuzzy Definition

For clarity, some of the definitions are repeated in the following discussions.
Definition 1: Let E be a referential set and x be an element of E. Then, a fuzzy subset
A of E will be defined by its membership function, which means the element of E
belongs to A with the level located in [0, 1].

∀x ∈ E : µA(x) ∈ [0, 1]. (1)

Two major operations which will form fuzzy sets as a lattice structure are defined
as follows.
Definition 2: Let E be a set, x be an element of E, and mu (x) be its membership
function. Let A and B be two fuzzy subsets of E.
The union of subsets A and B is

µA∪B(x) = Max[µA(x), µB(x)]. (2)

The intersection of subsets A and B is

µA∩B (x) = Min [µA (x), µB (x)]. (3)

Since [0, 1] is a complete lattice, we can define intersections and unions of arbitrary
families

Intersect : IµAi(x) = infµAi(x).
i∈I i∈I (4)

Unions : UµAi (x) = sup µAi (x).
i∈I i∈I (5)

2.2. Membership Function

To diagnose a fault in the CUT, choosing a reasonable membership function is very
important. Although how to determine a membership function is still a question for all
researchers in the world, according to fuzzy math there are some available functions
for membership functions in real domain, such as rectangle function, triangle func-
tion, Gaussian function, Cauchy function and so on. Among those functions, Gaussian
functions are used morew frequently, which can best present a fuzzy set of faults and
have small computation-time consumption. Formula (6) presents Gaussian function.

µA (x; a, k) = exp
(
−

( x − a
δ

)2
)
= exp

(
−k (x − a)2

)
, (6)

where a is the central point and k is the deviation (k > 0).
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2.3. Fuzzy Math Expression in Fault Diagnosis

Suppose that the fault set is F = {F0, F1, F2, ..., Fp} (1 ≤ p ≤ n), where n is the
number of elements in CUT and F0 denotes the normal state, which means there is no
faulty element in CUT. A = {A1, A2, ..., Am} is the test node set and m is the number of
test nodes.

In CUT, when there is a fault Fi (0 ≤ i ≤ p), the voltage increment in each test
node can be measured as [∆ui1,∆ui2, ...,∆uim]. Then, the direction vector in each test
node is calculated as

−−−→
∆ui j = ∆ui j

/√√√ m∑
j=1

(
∆ui j

)2
. (7)

Therefore, for fault Fi (0 ≤ i ≤ p), its symbol direction vector−→
∆ui =

(−−−→
∆ui1,

−−−→
∆ui2, ...,

−−−→
∆uim

)T
is a m × 1 dimensional vector. When there is a fault in the

CUT, after calculating the direction vector of measured values in all test nodes, the
fault diagnosis of multi-node is to determine in which state the CUT is according to
the fuzzy set.

From the definition of intersection of subsets and minimum degree of membership
criterion, the degree of the state of CUT subordinated to Fi is defined as the intersection
of each vector component membership degree uFi j (

−−−→
∆ui j). So according to the definition

of the intersection function

uFi

(−→
∆u

)
= Min

[
uFi1

(−−→
∆u1

)
, uFi2

(−−→
∆u2

)
, ..., uFim

(−−−→
∆um

)]
. (8)

Then, from the definition of union of subsets and maximum degree of membership
criterion, if uFi

(−→
∆u

)
satisfies uFi

(−→
∆u

)
= Max

{
uF1

(−→
∆u

)
,UF2

(−→
∆u

)
, ..., uFp

(−→
∆u

)}
, it can

be deemed that the measured direction vector
(−→
∆u

)
is subordinate to Fi, and the current

state of the CUT is more similar to fault state Fi.
For multi-node diagnosis, if the values of membership functions at each nodes for

fault are close to 1, from (8) the value of the intersection function for fault is close
to 1 and it means the current fault code is corresponding to the fault code of fault if
Fi; if the value of any membership function is close to 0, the value of the intersection
function for fault is close to 0 and it means the current fault code is not corresponding
to the fault code of fault Fi. To be pointed out, the result of membership function may
be 1 and it only means the current state and fault state have the same character and
are the most similar, but possibly the CUT is not in a fault state.
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3. Diagnostic methodology

In this section, the fundamental theories of our diagnosis approach, fuzzy math
expression for diagnosis, and membership function are discussed.

3.1. Principle of the Direction Vector Method for the Diagnosis of Faulty
Element

Let us suppose that a CUT with n elements and m test nodes (1 ≤ m ≤ n) consists
of linear resistors, inductors, capacitors, and voltage-controlled current sources, all with
nominal parameters and independent current sources.

When an element connected to nodes k and q is faulty and its admittance is
perturbed from Y to Y +∆Y , the measured node voltages of accessible test nodes
change from U to U +∆U, where ∆U = [∆u1, ...,∆um]. In [15], it is shown that the
deviation of the i th-node voltage is given by

∆ui = −(zik − ziq
∆Y

1 + δ∆Y
(uk − uq), (i = 1, ...,m), (9)

where zi j(i, j = 1, ...,m) are elements of the node impedance matrix and δ = zkk − zkq +

zqq. That is, due to the parameter perturbations of elements, the voltage deviation at
the test point is a linear combination of the voltages across those elements in CUT.
Therefore, according to [15], it can be easily obtained.

∆ui
m∑

j=1

∆u2
j


1/2 =

zix
m∑

j=1

z2
jx


1/2 . (10)

So, it can be obtained that

−−→
∆ui =

∆ui
m∑

j=1

∆u2
j


1/2 =

zix
m∑

j=1

z2
jx


1/2 . (11)

Equation (11) shows that
−−→
∆ui is a constant dependent on the position and the

nominal parameter of the element in CUT. But it is independent of the parameter
perturbation ∆Y . Therefore, to m test nodes,

−→
∆u =

[−−→
∆u1,
−−→
∆u2, ...,

−−−→
∆um

]
can be defined

as the symbol direction vector of a single fault in the CUT.
So, in a linear analog circuit, when a fault occurs in any component, no matter

how great the change magnitude of the faulty parameter is, the direction vector of
node-voltage increment caused by the faulty component is invariant. And, if all the
faults in one component are regarded as one-kind fault, the size of the fault dictionary
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is exactly equal to the number of the components in CUT and all symbol direction
vector of elements can establish a m × n dimensional symbol matrix.

3.2. The Diagnosis Process for Soft Fault with Tolerance Based on Fuzzy
Math and Direction Vector

In practice, due to the element parameter tolerance, when a fault occurs in the CUT,
the real parameters of other components are randomly changed in their tolerance range
and the measured voltage increment in each node is within a little range. Therefore, the
calculated direction component in each test node is correspondingly changed around
its nominal value. In order to locate the faulty element under the influence of tolerance,
the diagnosis steps based on fuzzy math and direction vector are as follows:
x = (x1, x2, ..., xm)T expresses the tested fault vector, where m are the test nodes.
– Step 1 Define the referenced vectors of faults in fault set A =

[
uF1, uF2, ..., uFp

]
,

where F j( j=1,2,...,p) is the predefined fault state in fault set and

uF j =
[−−−→
∆u1 j,

−−−→
∆u2 j, ...,

−−−→
∆umj]T . Let i = 1, j = 1.

– Step 2 Calculate the relation degree between the component xi (i=1,2,···,m) of the tested

direction vector of
−→
∆u and the component

−−−→
∆ui j (i=1,2,...,m) of referenced vectors in

A referred to (8). Then, i = i + 1.
– Step 3 If i < m, go to step 2;

If i = m, calculate the intersection relation degree of the tested vector to supposed
fault F j referred to (4). Then, let j = j + 1, i = 1.

– Step 4 If j = p, then go to step 5, else return Step 2.
– Step 5 Calculate the union relation degree of all uF j. Then, obtain the final result

referred to (5).

3.3. Determination of Membership Function

From 3.1. it is known that in each fault state there is a symbol direction vector
and the direction component for each test node is constant. So, in deciding on the
membership function, the component of the symbol direction vector can be regarded
as the center parameter a in membership function. Parameter k of membership function
is estimated from the fixed width approach. As in 3.2, due to the element parameter
tolerance, the calculated direction component changes around its nominal value. In
each test node, if we think that the value of the Gaussian function in (6) is equal to
or greater than 0.9, the calculated direction component is close to the component of
symbol direction vector. Then, suppose parameter a expands a fixed width δ at each
side and the value of the membership function in each node is 0.9. The parameter k can

be calculated from k = − ln 0.9
(ur − a)2 = −

in 0.9
δ2

, where is the measured direction vector
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component in test node when the CUT is under fault state. If set δ2 = (ur−a)2 = 0.05v2,
then k ≈ 2.107v2.

According to fuzzy math, the membership function can be divided into three
segments: 1-segment, abrupt-segment and 0-segment. In 1-segment, the values of the
membership function are equal or close to 1, and the nominal value is the center.
Abrupt-segment is a transitional segment which presents a sudden change of the mem-
bership function. Out of abrupt-segment, it enters the 0-segment, where the similarity
between the current state and the fault state is very low and which means the CUT is
in another fault state.

4. Experiment Results and Discussion

In this section, experiments are made to prove the effectiveness of the proposed
method. All the simulation and the calculations were performed with the PSPICE
program [23] and MATLAB [24] in a PC with Intel T2080@1.73GHz and 504 MB.

4.1. Fault Diagnosis without Tolerance

An example of a current benchmark circuit in [25] is shown in Fig. 1. Here, the
following values have been taken: R1=R2=R3=R4=R5=10kΩ, C1=C2=20nF, R6=3kΩ,
and R7=7kΩ. According to the approach presented in the previous section, in order to
diagnose all faults in resistance, a 1Vdc DC voltage source is placed as input of the
CUT. The faults in capacitors are diagnosed using the same method when the stimulus
of CUT is changed to a 500 Hz, 1Vac AC voltage source. All nodes, except for the
input node, in the CUT are chosen as test nodes. The CUT is tested with bias points
analysis obtained by inducing single faults to the circuit in the component value from
the nominal value. A linear matrix equation Am×n x = b is built and solved to diagnose
the CUT.

Fig. 1. Benchmark circuit (Continuous-Time Sate-Variable Filter).
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Seven suspicious failure conditions of the components are defined as shown in
Table 1(A) and Table 1(B). The diagnosis results are given at the same time.

The solution of the linear equation shows the position of a faulty element. It means
that if the i th element is faulty, the i th component in the solution vector is equal to
or close to one and other components are zero. From the calculated results in Table 1,
in all solution vectors for preset faults, it can be seen that all soft fault can be located
correctly, which means the method we assumed above is valid.

Table 1(A). Diagnosis results with DC Input.

@
@@

R1=30K R2=5K R3=20K R4=30K R5=1K R6=0.5K R7=20K

R1 9.9996e-01 4.1678e-04 -1.2811e-03 8.8882e-04 1.9419 e-04 -1.5258e-04 4.4331 e-05
R2 5.8821e-09 -9.9958e-01 -1.2341e-09 3.7252e-09 2.0010 e-09 -1.8626e-09 -4.4332 e-05
R3 3.0434e-12 -0.0000e-01 1.0000 e-00 -7.0030e-11 -1.5139 e-11 1.1820 e-11 -3.4558 e-12
R4 2.0326 e-12 -0.0000e-01 6.6770 e-11 9.9999 e-01 -1.0121e-11 7.7300 e-12 -2.3104 e-12
R5 -3.9014e-05 4.1678 e-04 -1.2811e-03 8.9263 e-04 -9.9981 e-01 -1.6021e-04 4.4331 e-05
R6 2.9553e-10 8.7169 e-03 1.0486 e-08 -8.1781e-09 -1.4234e-09 -9.9999 e-01 -9.2734 e-04
R7 2.9826 e-10 8.7169 e-03 1.0575 e-08 -8.1781e-09 -1.437 e-09 1.5134 e-09 9.9907-01

Vi=1Vdc

Table 1(B). Diagnosis Results with AC Input.

C1=40nF C2=40nF

R1 -0.0953 - 0.2165i 0.0398 + 0.1083i
R2 -0.1376 - 0.2548i -0.1704 + 0.0339i

R3 -0.3076 + 0.0487i -0.0557 - 0.0471i

R4 -0.0826 - 0.031i -0.3445 + 0.013i

R5 -0.0423 - 0.0383i -0.2102 - 0.0744i

R6 0.107 + 0.0035i -0.1308 - 0.023i

R7 0.107 + 0.0035i -0.1308 - 0.023i

C1 0.6924 + 0.0487i -0.0557 - 0.0471i

C2 -0.0826 - 0.031i 0.6555 + 0.013i

Vi=1Vac(f=500Hz)

4.2. Fault Diagnosis with Tolerance

Let us consider the transistor circuit shown in Fig. 2, where nodes 1,2,5,6,8-10 are
accessible nodes for measurement. The nominal resistance values are shown in Fig.
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2 and the tolerance of any resistance is assumed as 5% of the nominal value. If the
parameter perturbation of each element is beyond its tolerance range, it is thought to
be faulty.

Fig. 2. A DC circuit.

The referenced direction vector values of single faults (without tolerance) can be
calculated according to (11), and are shown in Table 2.

Table 2. The referenced direction vectors of single faults (without tolerance).

F1 (0.00550,-0.51009,-0.03211,-0.50798,0.00796,-0.50354,-0.47654)

F2 (-0.00517,0.51022,0.03241,0.50813,-0.00756,0.50356,0.47621)

F3 (-0.00518,0.51018,0.03240,0.50809,-0.00759,0.50355,0.47630)

F4 (0.00523,-0.51004,0.00609,-0.50751,0.00833,-0.50358,-0.47809)
F5 (-0.00442,0.51001,-0.01891,0.50989,-0.00640,0.50422,0.47459)

F6 (0.00687,0.00095,0.00006,0.00096,0.01036,-0.72639,-0.68717)

F7 (-0.00996,-0.00114,-0.00006,-0.00109,-0.01585,0.08162,0.99649)

F8 (0.00999,0.00137,0.00008,0.00138,0.01523,0.00622,-0.99981)

F9 (0.17011,0.02326,0.00148,0.02349,0.27161,0.10095,0.94128)

F10 (-0.69383,-0.09482,-0.00603,-0.09555,-0.69375,-0.09809,-0.09764)

According to the values in Table 2, the fault set here can be defined as
F = {F1, F2, ..., F10}. Certainly, when the number of tested nodes are decreased, the
fault set should be redefined.

For single fault diagnosis with tolerance in the CUT, the Gaussian distribution
function is used as the membership function and the similarity degree of the tested
fault to Fi in fault set is calculated as

u Fi = Min
(

exp
{
−2.107 ×

(−−→
∆uJ − ai j

)2})
, (12)
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where ai j represents the j th sub-vector value of Fi ’s referenced direction vector and−−→
∆uj represents the j th sub-vector value of the measured direction vector.

4.2.1. Diagnosis with different faults in one element

Since variations in analog component parameters, which result in output varia-
tions, are random in nature, they are modeled by conducting a series of Monte-Carlo
simulation runs. In each of these runs, component parameters are randomly varied by
a certain (user-defined) percentage around their nominal values. Here, an element in
the CUT is randomly chosen as the faulty element. 50 Monte-Carlo simulations with
DEV=5% are invoked. Supposing that soft faults occur in R4 and the parameter of R4
changes to 720 Ω (slightly out of tolerance range), 1360 Ω (double of the nominal
value) and 200k Ω.

Table 3. Part calculated direction vectors of Monte-Carlo simulations (with tolerance σ=5% ) with
faults in R4.

(-0.09681,-0.50525,0.00561,-0.50321,-0.09443,-0.49929,-0.47317)
(-0.06558,-0.50537,0.00375,-0.50375,-0.06375,-0.50093,-0.48118)

R4=720 (-0.19625,-0.50896,0.00235,-0.50565,-0.19398,-0.49752,-0.40199)
(-0.10754,-0.50476,0.00649,-0.50277,-0.10644,-0.50268,-0.46563)
(-0.09641,-0.49582,0.00594,-0.49376,-0.09513,-0.49167,-0.50025)

(-0.00085,-0.51004,0.00605,-0.50752,0.00223,-0.50361,-0.47813)
(-0.00087,-0.50978,0.00561,-0.50731,0.00216,-0.50354,-0.47872)

R4=1360 (-0.00167,-0.51101,0.00582,-0.50842,0.00139,-0.50428,-0.47544)
(-0.00150,-0.51010,0.00622,-0.50759,0.00145,-0.50398,-0.47761)
(-0.00064,-0.50947,0.00610,-0.50695,0.00234,-0.50313,-0.47986)

(0.00504,-0.51587,0.00655,-0.50877,0.03121,-0.50368,-0.46935)
(0.00504,-0.51597,0.00623,-0.50885,0.03191,-0.50371,-0.46908)

R4=200K (0.00503,-0.51592,0.00636,-0.50881,0.03050,-0.50374,-0.46923)
(0.00503,-0.51582,0.00670,-0.50873,0.03088,-0.50374,-0.46941)
(0.00505,-0.51584,0.00658,-0.50874,0.03123,-0.50364,-0.46946)

In Table 3, part of calculated direction vectors when R4 equals different values is
given.
For example, when R4 = 1360 Ω, one of the measured direction vectors is

−→
∆u =

(-0.00087, -0.50978, 0.00561, -0.50731, 0.00216, -0.50354, -0.47872) and the simila-
rity degree of the fault to each Fi in the fault set is:
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1 0.99991 1 0.99701 1 0.99993 1 0.99999 0.99701Fu = Λ Λ Λ Λ Λ Λ =

2
0.99996 0.11168 0.99849 0.11389 0.99980 0.11800 0.14641 =0.11168

F
u = Λ Λ Λ Λ Λ Λ

3
0.99996 0.11170 0.99849 0.11391 0.99980 0.11801 0.14636 0.11170

F
u =Λ Λ Λ Λ Λ Λ=

4 0.99992 1 1 1 0.99992 1 1 0.99992Fu = Λ Λ Λ Λ Λ Λ =

5 0.99997 0.11178 0.99873 0.11303 0.99984 0.11767 0.14737=0.11178Fu Λ Λ Λ Λ Λ Λ=

6 0.99987 0.57719 0.99994 0.58023 0.99986 0.90065 0.91252 0.57719Fu Λ Λ Λ Λ Λ Λ ==

7
0.99983 0.57979 0.99993 0.58279 0.99930 0.48603 0.01020 0.01020

F
u Λ Λ Λ Λ Λ Λ ==

8 0.99975 0.57666 0.99994 0.57971 0.99964 0.57838 0.56432 0.56432Fu Λ Λ Λ Λ Λ Λ ==

9
0.94026 0.54955 0.99996 0.55230 0.85815 0.46305 0.01428 0.01428

F
u Λ Λ Λ Λ Λ Λ ==

So, according to (5), uF4 =sup
10

i=1
uFi , the tested fault is F4 in the fault set. Therefore,

R4 is the faulty component in the CUT.
Similarly, all faults in R4 can be diagnosed through Monte-Carlo simulations can be

diagnosed as above. When R4 equals 720 Ω, because the element value is just slightly
out the tolerance range little (0.88%), there are erroneous judgments in diagnosis
results. When equals 1360 Ω and 200k Ω, almost all diagnoses can be correctly located
to the real faulty element, which means that the magnitude of faults in a faulty element
have no influence on the diagnosis results based on the method proposed in this paper.

4.2.2. Diagnosis with faults in a different element

Three cases with the following faults were studied.
– Case 1: element R5 is faulty and R5 = 11.5kΩ. All the other parameter of the CUT

are R1 = 101kΩ, R2 = 26.5k R3 == 103Ω, R4 = 650Ω, R6 = 22.5kΩ, R7 = 10.05kΩ,
R8 = 4.75kΩ, R9 = 1.01kΩ and R10 = 10Ω. ×

– Case 2: element R1 is faulty and R1 = 200kΩ. R5 = 9.95kΩ, the other parameters
of the CUT remain as in Case1.

– Case 3: element R8 is faulty and R8 = 9.6kΩ. R5 = 9.95kΩ, the other parameters
of the CUT remain as in Case1.
According to the diagnosis method proposed in the paper, the similarity between

exampled fault and predefined fault set is calculated. Table 4 gives the intersection
results of the above three exampled faults subordinated to the predefined faults in the
fault set. From the maximum similar degree values in each case, the faulty element
is located correctly. The results show that under the influence of parameter tolerance,



72 LONGFU ZHOU et all.: SOFT FAULT DIAGNOSIS IN ANALOG CIRCUIT...

the proposed method in this paper still gives the correct fault types for all the sampled
faults.

Table 4. The intersection results of exampled faults to predefined faults.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

case 1 0.11221 0.99668 0.99668 0.11223 0.99972 0.04145 0.56998 0.009912 0.60850 0.36738

case 2 0.99062 0.10892 0.10894 0.97700 0.10902 0.56998 0.01254 0.52293 0.01742 0.35090

case 3 0.14511 0.07396 0.07393 0.14514 0.07453 0.05550 0.00365 0.98502 0.00530 0.35127

4.3. Comparison with other method

In reference [16], an example of a linear resistive analog circuit is given as Fig. 3,
where Is=1A, R1 =R2 = R4 =R5 =1 Ω, R3=0.5 Ω. The tolerance of each element is set
as 10%. The candidate test node set is {©1 , ©2 , ©3 ,}.

Fig. 3. A linear resistive analog circuit as an example in [16].

In reference [16], each fault state is defined as the faulty element has a fixed value,
which make its fault set infinite. And, according to reference [16], double or half of
the nominal sensitivity ratio is the choice to calculate parameter k in the membership
function, which cannot show clearly whether an element value is out of its tolerance
range. Therefore, when the faulty element’s value changes heavily, in some condition,
incorrect fault location cannot be unavoidable.

Here, the method in [16] and the method proposed in this paper are used to
diagnose the parameter fault in the CUT shown in Fig. 3. Table 5 gives partial diagnosis
results of comparison of the two methods. All the measured voltage increment in Table
5 are the results of Monte-Carlo simulation with components changing within their
tolerance (σ=10%) under the condition of Gaussian distribution.



Metrol. Meas. Syst. Vol XVI (2009), No. 1, pp. 61-75 73

Table 5. Partly diagnosis results of two methods.

R1=0.5 tolerance=10% R1=100 tolerance=10%
voltage increment in nodes

(∆u1,∆u2,∆u3)
Result1 Result2

voltage increment in nodes
(∆u1,∆u2,∆u3)

Result1 Result2

(0.714286,0.285714,0.428571) F1 F1 (1.385826,0.204724,0.397637) F1 F1

(0.698747,0.269076,0.411181) F1 F1 (1.392674,0.193993,0.377660) F3 F1

(0.738339,0.281272,0.441687) F1 F1 (1.455955,0.205426,0.389226) F2 F1

(0.718372,0.292945,0.438510) F1 F1 (1.443553,0.216722,0.409166) F1 F1

(0.701264,0.288671,0.416817) F2 F1 (1.299740,0.206992,0.391689) F2 F1

(0.716818,0.297120,0.423785) F2 F1 (1.444034,0.216580,0.419562) F5 F1

(0.700610,0.278780,0.408992) F1 F1 (1.418745,0.201877,0.394843) F2 F1

(0.720530,0.271765,0.423193) F1 F1 (1.444124,0.190715,0.388195) F1 F1

(0.737726,0.308202,0.449402) F1 F1 (1.391149,0.225704,0.418379) F3 F1

(0.727122,0.285106,0.438630) F1 F1 (1.404477,0.211777,0.386834) F3 F1

Result 1: diagnosis result using the method in reference [16].
Result 2: diagnosis result using the method introduced in this paper.

From the diagnosis results, firstly, when the faulty magnitude is not very high
(50%), the diagnosis ratio in this paper is improved compared to [16]. Secondly, be-
cause of the limitation of a fault set defined in [16], when an element changes heavily,
the fault diagnosis ratio is low. However, under the fault set defined in this paper, the
question does not appear. Therefore, the two questions in [16] mentioned above are
solved in this paper.

5. Conclusions

A new approach to locate a single soft fault in an analog circuit is presented.
In this paper, for the diagnosis of an analog circuit fault, the fuzzy math and the
direction vector of the voltage increment are combined together. A linear equation
whose coefficient matrix is composed of the direction vector of the voltage increment
is built to identify a parametric fault of an element. From the solution of the equation,
the faulty element is located. When the tolerance influence is considered, a soft fault
diagnosis strategy is presented using fuzzy math. The membership function decided by
a fixed width approach is used to identify the faulty state. The given examples show
that the method proposed is effective and the diagnosis accuracy is high. Compared to
other methods, the predefined fault set is simplified and the diagnosis ratio is increased.

In addition, the approach is proven to be valuable in the diagnosis of multi-faults
(two or three faults) in an analog circuit, which will be presented in another paper.
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