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APPLICATION OF A BAYESIAN ESTIMATOR FOR IDENTIFICATION
OF EDIBLE OILS ON THE BASIS OF SPECTROPHOTOMETRIC DATA

Spectrophotometric analysis of oil mixtures, containing olive oil, is the subject of this paper.
Its objective is to compare a new Bayesian estimator with the constrained least-squares estimator,
when applied for estimation of concentrations of components of edible oil mixtures, and to assess
its applicability for solving problems of industrial monitoring. The comparison is based on the use
of semi-synthetic NIR spectrophotometric data and criteria related to measurement uncertainty.
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1. INTRODUCTION

The quality and purity of olive oil, extensively used in food industry, is of signi-
ficant commercial importance. According to the EU regulations in force since 2002,
a manufacturer of products based on or containing olive oil, must either indicate the
share of olive oil (and other oil components) in the total weight of the product or
the percentage of the total fat. That is why an increased interest in the methods for
oil mixtures analysis has been observed for the last five years. Near-infrared (NIR)
spectrophotometry, when combined with sophisticated procedures for spectrophotome-
tric data processing, seems to be the most promising tool for such applications, as
suggested in many recent publications [1-5]. In general, NIR spectrophotometry is of
particular usefulness for food analysis because spectra of organic samples comprise
broad bands arising from overlapping absorption peaks corresponding to C-H, O-H
and N-H chemical bonds. The main advantage of NIR spectrophotometry, when ap-
plied to off-laboratory analysis of food, is its simplicity and speed: usually no sample
preparation is necessary and the time of analysis is not greater than 1 minute. Another
advantage of NIR spectrophotometry is that it allows several constituents to be identi-
fied concurrently. Finally, the relatively weak absorption due to water enables one to
analyze high-moisture food products and ingredients.
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Off-laboratory applications of NIR spectrophotometry in food analysis may be
roughly subdivided into two classes: fraud detection and monitoring of manufacturing
processes. This paper is devoted to an instance of the latter one, viz. to the monitoring
of edible oils mixing. The monitoring-type problems have two specific features:

– a monitoring instrument is repeating – over a long period of time – the same
measurement function, i.e. it is measuring the same quantities, in the same range, with
the same uncertainty;

– the ranges of their variation are relatively narrow and known a priori.
Both those features may be used for improving the performance of NIR analysis

without significant costs – by the deliberate use of them in the procedures for NIR
data processing. The Bayesian framework seems to be most appropriate for the de-
velopment of such procedures because historical data, acquired during a sufficiently
long monitoring run, contain very reliable a priori information on measurands and
may be used for constructing corresponding probability density functions. This paper
is devoted to the comparison of the Bayesian method, developed for Vis-spectrometric
applications in a recently-defended Ph.D. thesis [6], with a constrained least-squares
method, when applied for quantitative determination of trinary oil mixtures on the basis
of the data representative of their NIR spectra. Both compared methods are nonlinear
because they incorporate non-trivial constraints of the space of feasible solutions, thus
- potentially predisposed to provide lower uncertainty of estimation than the linear
method of ordinary least squares.

The paper is organized as follows. First, in Section 2, a mathematical model of
spectrophotometric data, underlying the Bayesian method to be studied, is briefly de-
scribed. Next, in Sections 3 and 4, the Bayesian method itself and its implementation
are presented using a mathematical model of the data introduced in Section 2. Finally,
in Sections 5-6, the methodology of study and the results of study are presented. The
conclusions, provided in Section 7, are mainly concentrated on the metrological pro-
perties of the studied Bayesian method and its practical utility for solving the problem
of monitoring oil mixing processes.

The following general rules are consistently used throughout the paper for gene-
ration of mathematical symbols:

x, y, . . . are real-valued scalar variables;
x, y, . . . are vectors of real-valued variables;
X, Y, . . . are matrices of real-valued variables;
ẋ, ẏ, . . . are exact values of the variables x, y, . . . ;
x̂, ŷ . . . are estimated values of the variables x, y, . . . ;
x̂, ŷ, . . . are estimated values of the vectors x, y, . . . ;
x̃, ỹ, . . . are noisy versions of the vectors x, y, . . . ;
x, y, . . . are random variables whose realizations are denoted with x, y, . . . ;
x, y, . . . are random vectors whose realizations are denoted with x, y, . . . ;
All mathematical symbols, used in the paper, are alphabetically listed in the Ap-

pendix.
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2. MATHEMATICAL MODEL OF SPECTROPHOTOMETRIC DATA

A spectrophotometer to be used for determination of oil mixtures consists of a
sampling block (comprising a light source and a sample holder), a spectrophotometric
transducer (ST) and a digital interface enabling communication with a computing
means (i.e. a regular computer or a microprocessor or a digital signal processor) loaded
with a corresponding piece of software (firmware). The ST is converting an optical
signal into a digital signal - the data representative of the spectrum of the input optical
signal. Numerical processing of those data by computing means comprises all the
operations necessary for transforming “meaningless” digital codes into “meaningful”
representation of the spectrum – in the transmittance domain or in the absorbance
domain - with an uncertainty not exceeding some predefined limits. It may also provide
some results of spectrum interpretation, e.g. the estimates of magnitudes and positions
of absorption peaks. In the majority of spectrophotometers available on the today’s
market, the ST is based on a grating-type dispersive element followed by an array
of photodiodes (a photodetector), converting optical into electrical signals, and an
analogue-to-digital converter. This solution implies the discretisation of the wavelength
axis that may be defined by a sequence of wavelength values {λn} such that:

λmin = λ1 < λ2 < ... < λN−1 < λN = λmax (1)

where N is the number of data provided at the ST output, i.e. the number of photodiodes
in the photodetector.

The intensity data, provided by an ST, may be modelled using a white-box ap-
proach, a black-box approach, or a grey-box approach combining some advantages of
white-box and black-box approaches [7]. 80 years of experience behind modelling of
spectrophotometric data seems to support the conclusion that the approximation power
of a superposition of a linear integral operator with a nonlinear algebraic operator
(the so-called Wiener operator) is sufficient for adequate modelling of the relationship
between the intensity spectrum x(λ) and the corresponding raw data ỹ = [ỹ1...ỹN]T .
Let the variable ŷn denote the mathematical model of the “noise-free” version of the
datum ỹn. Then this operator may be given the form:

ŷn = F


+∞∫
−∞

gn(λn − λ)x (λ) dλ;αn

 for n = 1, ...,N (2)

where:
– gn(λ) is the response of the ST, measured at the output of the n th photodiode, to

a tunable monochromator producing an optical signal whose spectrum is close to
x(λ) � δ(λ − l) where l is sweeping the wavelength range [λmin, λmax];
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– F(•; αn) is an a priori known function (e.g. an algebraic polynomial or a cubic
spline) whose parameters, organised in a vector αn, have to be determined during
the ST calibration.
The reasoning presented for the intensity-domain data may be applied to the

transmittance-domain data. As a rule, due to the compensation of some irregulari-
ties by the division of corresponding intensity data, the function F(•; α can be less
complex in this case, and the variability of α and gn(λ) along the wavelength axis –
less important. Consequently, in many cases this variability may be ignored and the
corresponding model of the transmittance-domain data can be simplified by fixing:
αn ≡ α and gn(λ) for n = 1, ..., N . This analysis justifies the use of the following
mathematical model of the relationship between the transmittance spectrum xTr (λ)
and the corresponding data ỹTr = [ỹTr

1 ...ỹ
Tr
N ]T :

ỹTr
n =

+∞∫
−∞

g (λn − λ) xTr (λ) dλ + ηn for n = 1, ...,N (3)

where the additive residuals ηn represent the total uncertainty of data modelling.
For the purpose of modelling the dependence of the data on concentrations, one

may use the Lambert-Beer laws of absorption to relate xTr (λ) in Eq.(3) to the vector
of concentrations c = [c1...cJ]T :
– the absorbance of a solution of a single component is proportional to its concentration;
– the absorbance spectrum of a multicomponent solution:

xAb (λ) = − log10

[
xTr (λ)

]
(4)

equals the linear combination:

xAb (λ) = c1xAb
1 (λ) + ... + cJ xAb

J (λ) (5)

of the normalized absorbance spectra of the components xAb
1 (λ), ..., xAb

J (λ).
Eq.(3), Eq.(4) and Eq.(5) should undergo discretisation to become a useful basis for
the development of numerical methods for estimation of concentrations. Thus, Eq.(3)
is replaced with:

ỹTr = G · xTr + η (6)

where:

η =
[
η1...ηN

]T (7)

xTr =
[
xTr (
λ′1

)
...xTr (

λ′M
)]T

(8)



Application of a bayesian estimator for odentification... 251

λ′m = λmin + (m − 1)
λmax − λmin

M − 1
for m = 1, ...,M (9)

and G is an N × M matrix whose values depend on the values of the function g (λ)
and on the chosen method of numerical integration. The discretisation of Eq.(4) and
Eq.(5), consistent with Eq (6), yields:

xAb =
[
− log10

(
xTr (
λ′1

))
... − log10

(
xTr (
λ′M

))]T
(10)

xAb = c1xAb
1 + ... + cJxAb

J = XAbc (11)

where:

xAb
j =

[
xAb

j
(
λ′1

)
...xAb

j
(
λ′M

)]T
for j = 1, ..., J (12)

XAb =
[
xAb

1 ... x
Ab
J

]
(13)

The up-to-now developed model of the relationship c → ỹTr characterizes this
relationship for one particular pair of c and ỹTr . It should be generalized to the po-
pulations of possible vectors c and ỹTr to make possible the use of a probabilistic
framework. This can be achieved by introducing random vectors (denoted hereinafter
with underlined symbols) for modelling unknowns. The randomization of the vector
η, modelling uncertainty, yields:

ỹTr = G · xTr + η (14)

where η =
[
η

1
...η

N

]T
. The model of the relationship between concentrations and ab-

sorbance spectrum, corresponding to Eq.(11) takes on the form:

xAb = XAbc + ε (15)

where

c=
[
c1...cJ

]T
is the random vector of the concentrations to be estimated, ε =[

ε1...εM

]T
is the random vector containing samples of the residual spectrum representa-

tive of unexpected or neglected components, and CAT is the operator of absorbance-to-
transmittance conversion:

xTr =
[
xTr

1 ...x
Tr
M

]T
= CAT

[
xAb

]
=

[
10−xAb

1 ...10−xAb
M
]T

(16)

The substitution of Eq.(15) to Eq.(16) and then of Eq.(16) to Eq.(14) yields a
compact-form, discretised and randomized model of the data underlying the Bayesian
method described in the next section:
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ỹTr = G · CAT
[
XAbc + ε

]
+ η (17)

It should be noted that this model, developed for a grating-based ST, is also valid
for other types of STs.

3. FORMULATION OF THE RESEARCH PROBLEM
AND PROPOSED SOLUTION

The research problem to be solved can be now formulated as follows: given the
matrix XAb (containing discretised spectra of selected edible oils), the matrix G (re-
presentative of the apparatus function of the spectrophotometer), and some a priori
information on the probabilistic properties of the random vectors η, ε and c – estimate
the vector of concentrations c, using the spectrophotometric data ỹTr representative of
the oil mixture to be analyzed.

A most natural tool for relating the uncertainty of the raw data used for measurand
estimation and uncertainty of the a priori information on the measurand to the final
result of measurement is the Bayes theorem [8]. Known for two centuries, the Bayesian
approach became a “popular” tool for processing measurement data only ten years ago,
when available computational power of PCs made it implementable. It follows from the
Bayes’ theorem that the probability density function, representative of the a posteriori
probability of the final result of measurement conditional on the data (the so-called
posterior) is proportional to the product of:
– a probability density function representative of all the a priori information on the
model of the data and on the uncertainty of the raw measurement data;
– a probability density function representative of all the available a priori information
on the measurand.

Thus, the posterior contains all the available a priori information that may be used
for solving the problem of measurand estimation. The most common approach consists
in maximization of the posterior with respect to the measurand. In practice, however,
many simplified approaches have been developed to avoid or overcome difficulties
related to the numerical complexity intrinsic of this approach when applied to such a
generic optimization problem.

The Bayesian method for the estimation of c using a realization ỹTr of ỹTr , deve-
loped and studied in the source Ph.D. thesis [6], is derived from the following Bayes’
formula:

fc|ỹTr

(
c|ỹTr

)
=

fỹTr |c
(
ỹTr |c

)
fc (c)

fỹTr
(
ỹTr) (18)

where fc (c) is the a priori probability density function for ỹTr; fc|ỹTr

(
c
∣∣∣ỹTr

)
is the a

priori probability density function for ỸTr
; fc|ỹTr

(
c
∣∣∣ỹTr

)
is the a posteriori probability
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density function for c conditional on ỹTr ; and fỹTr |c
(
ỹTr |c

)
is the probability density

function for ỹTr conditional on c. In general, the Bayesian estimation of concentrations
may be based on the mean value or median or maximum value of the function defined
by Eq.(18) In the method of estimation to be studied hereinafter, the following approach
is used:

ĉ = argcsup
{
fc|ỹTr

(
c|ỹTr

)
|c ∈ C

}
= argcsup

{
fỹTr |c

(
ỹTr |c

)
fc (c) |c ∈ C

}
(19)

where: C = {c | c1, ..., cJ ≥ 0; c1 + ... + cJ ≤ 1}. The omission of the function fỹTr

(
ỹTr

)
in this formula is justified by its independence of c.

4. IMPLEMENTATION OF THE PROPOSED SOLUTION

First, the Bayesian method, described in the previous section, has been adapted to
the condition c1 + ... + cJ = 1 satisfied by any oil mixture to be analysed. Due to the
equality implied by this condition:

xAb (λ)=
J∑
j=1

c jxAb
j (λ)=

J−1∑
j=1

c jxAb
j (λ)+

1−
J−1∑
j=1

c j

 xAb
J (λ)=

J−1∑
j=1

c j

[
xAb

j (λ)−xAb
J (λ)

]
+xAb

J (λ)

(20)
the estimated vector of concentrations has been reduced to c = [c1c2...cJ−1]T , and the
statistical independence of the corresponding random variables c1, c2, ..., cJ−1 has been
assumed. The model of the data has been, consequently, modified accordingly:

ỹTr = G · CAT
[
XAbc + xAb

J + ε
]
+ η (21)

where:

XAb =
[

xAb
1 − xAb

J xAb
2 − xAb

J ... xAb
J−1 − xAb

J

]
(22)

Next, taking into account that the uncontrollable components in food products
to be analyzed must be at the trace level, it has been assumed that the norms of
the realizations of the random vector ε are small enough to justify the following
simplification:

fỹTr |c
(
ỹTr |c

)
= E

[
f
(
ε
)]
= fη

{
ỹTr −G · CAT

[
XAbc + xAb

J + µ ε
]}

with µ ε = E
[
ε
]

(23)
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ĉ = argcsup
{
fc|ỹTr

(
c|ỹTr

)
|c ∈ C

}
= argcsup

{
fỹTr |c

(
ỹTr |c

)
fc (c) |c ∈ C

}
(24)

where:

C = {c |0 ≤ c1, ..., cJ−1 ≤ 1} (25)

Finally, the Bayesian method, adapted to the target application, has been imple-
mented under an assumption that the components of the vector η are statistically
independent and that its distribution is Gaussian, i.e.:

fη (η) =
1√(

2πσ2
η

)N
exp

− ηTη

2σ2
η

 (26)

where σ2
η is the variance of the elements of the vector η. Additionally, unlike in

the source thesis [6], it has been assumed that the components of the vector c are
statistically independent and its a priori probability density function has the form:

fc (c) = A · exp
(
− [v (c)]T · v (c)

2σ2
v

)
(27)

where A is a normalization factor, and v(c) is a (J - 1)-dimensional vector whose
elements are defined by the following transformation of the finite interval [0, 1] into
the infinite interval (∞,+∞):

v j (c) ≡ c j − ^c j

c j

(
1 − c j

) for j = 1, ..., J − 1 (28)

with ^c j being the value of c j for which the corresponding marginal probability density
function attains maximum. It should be noted that the values of ^c j and σv are close
to but not identical with the mean value and standard deviation of c j, respectively; the
differences are shown in Fig. 1.
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Fig. 1. The dependence on ĉ and σv of the departure of the mean value µc of the random variable c
from ĉ (a) and of the standard deviation σc of c from σv (b).

The heuristic form of the a priori probability density function for c has been chosen
due to the lack of statistical data representative of a particular manufacturing process
to be monitored. Once such an application is selected, the distribution defined by
Eq.(27) should be replaced with an empirical distribution of c obtained on the basis of
historical data characterizing this application. The assumed a priori probability density
function for η is a good choice for the majority of measurement situations where the
total measurement uncertainty is the combined effect of many factors of comparable
magnitude: if one of them is dominating (e.g. the error of analogue-to-digital conver-
sion), then the use of the distribution characterizing this factor may be justified (e.g. a
uniform distribution).

The Bayesian method adapted to the target application, called BM hereinafter,
has been implemented using MATLAB ver. 7.5, supported by a MATLAB-compatible
software package of global optimization TOMLAB ver. 6.0 [9]. The estimation of
concentrations according to Eq.(24) has been implemented in MATLAB via the mini-
mization of the following goal function: function value = FUN(c)

value =
[v (c)]T · v (c)

2σ2
v

+
1
σ2
η

∥∥∥∥ỹTr −G · CAT
(
XAbc + xAb

J + µ ε
)∥∥∥∥2

using the TOMLAB box-bounded global optimization solver glbSolve with the lower
bounds defined by the vector clb = [00]T and the upper bounds defined by the vector
cub = [11]T . The BM has been implemented according to the following scheme:
– load the vectors xAb

j = 1, ..., J;
– form the matrix XAb according to Eq.(22)
– load the vector g containing the samples of the function g(λ);
– form a convolution matrix: G = ∆λ′∗CONVMTX(g, LENGTH(xAb

j ));
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– load the raw measurement data ỹTr to be processed;
– load the parameters ση, ĉ j for j = 1, 2, σv and µε;
– set up a global programming problem parameters into an input structure Prob: Prob
= glcAssign (’FUN’, clb, cub, ’NameOfTheProblem’)
minimize FUN by means of glbSolve: Result = tomRun(’glbSolve’, Prob, 0) to find
the solution:

ĉ = Result.x k.

5. METHODOLOGY OF INVESTIGATION

The Bayesian method for estimation of concentrations, described in Section 4, i.e.
the BM, has been systematically compared with the constrained least-squares method
(CLSM), defined by the formula:

ĉ = argcinf
{∥∥∥∥ỹTr −G · CAT

[
XAbc + xAb

J

]∥∥∥∥
2
|c ∈ C

}
(29)

where the set of admissible solutions C is defined by Eq.(25).
The comparative study has been based on semi-synthetic data, generated using

the high-resolution real-world data representative of corn oil (x̃Ab
1 ), nut oil (x̃Ab

2 ) and
olive oil (x̃Ab

3 ). The sequences of those data, each containing N = 501 data points,
covering the wavelength range from to , are shown in Fig. 1 (their closeness is a
source of difficulty of the problem under study). The denoised (by means of a nonlinear
smoothing filter) and baseline-corrected versions of those data – ẋAb

1 , ẋAb
2 and ẋAb

3 –
have been used for generation of the nine sets of high-resolution data for numerical
experimentation:

ẋAb = ċ1ẋAb
1 + ċ2ẋAb

2 + ċ3ẋAb
3 (30)

where:

ċ1 ∈ {0.01, 0.05, 0.09} ċ2 ∈ {0.01, 0.05, 0.09} and ċ3 = 1 − ċ1 − ċ2 (31)

are concentrations to be estimated. An exemplary spectrum ẋAb is shown in Fig. 2.
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Fig. 1. The raw spectrophotometric data acquired by means of a FTIR spectrophotometer set to the
resolution 1 cm−1.
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Fig. 2. The high-resolution data ẋAb for ċ1 = 0.01 and ċ2 = 0.01.

The high-resolution data, representative of residual spectra, have been synthesized
after the formula:

ε = level ·
(
u1ε

Ab
1 + u2ε

Ab
2 + u3ε

Ab
3 + u4ε

Ab
4

)
(32)

where level is an indicator of the importance of the residual spectrum; u1, u2, u3, and
u4 are identical independent random variables following the distribution uniform in the
interval [0, 1]; and εAb

1 , εAb
2 , αAb

3 , and αAB
4 are vectors of samples of Gaussian functions

whose parameters are presented in Table 1.
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Table 1. The parameters of the Gaussian functions used for generation of data representative of the
residual spectrum.

εAb
1 εAb

2 εAb
3 εAb

4

Mean value 1 700 nm 1 900 nm 2 100 nm 2 400 nm

Standard deviation 8 nm 32 nm 22 nm 15 nm

The low-resolution data ỹTr have been synthesized using Eq.(16) and Eq.(14)
The matrix G has been generated using an empirical apparatus function g(λ) shown
in Fig. 3. The standard deviation of the noise component has been set to the value
ση = 10−3, being a typical level of noise in micro-spectrophotometers which are today
commercially available.

Fig. 3. The apparatus function g(λ) used for experimentation.

The uncertainties of the estimates of concentrations, obtained by means of the
compared methods, the BM and the CLSM, have been assessed in a statistical way.
Each numerical experiment has been repeated R = 100 times, for various realizations
of disturbances η and of residual data ε, and the results {ĉ (r) | r = 1, ...,R } have been
used for computing estimates of the relative bias:

b̂ j =
1
R

R∑
r=1

δĉ j (r) for j = 1, ..., 3 (33)

and of the relative standard deviation:

ŝ j =

√√√
1

R − 1

R∑
r=1

[
δĉ j (r) − b̂ j

]2
for j = 1, ..., 3 (34)
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where:

δĉ j (r) =
ĉ j (r) − ċ j

ċ j
(35)

6. RESULTS OF INVESTIGATION

The comparison of the BM and the CLSM, based on semi-synthetic data, has been
carried out using the two sets of parameters characterizing a priori information:

V1 : c 1 = ċ1,

c2 = ċ2 and σv 3 {10−7, 10−6, 10−5, 10−4, 10−3, 10−3, 10−2, 10−1} (36)

V2 : c 1 = 0.95 · ċ1,

c2 = ċ2 and σv 3 {10−7, 10−6, 10−5, 10−4, 10−3, 10−3, 10−2, 10−1} (37)

where ċ1 and ċ2 are the exact values of concentrations used for the data synthesis. In
both cases, the value of level has been set to 10=3. The results of computation, obtained
for M = N = 501 , are presented in Figs 4–9 using the following types of lines to
differentiate the results corresponding to the three concentrations:

The lines representative of the results obtained by means of the BM are black,
and the lines representative of the results obtained by means of the CLSM are red.
For the sake of editorial space economy, only selected results are presented in the
graphical form. More complete numerical results of computation are shown in Tables
1-4 containing the maximum values of b ĵ and s ĵ, obtained for both compared methods:
the BM and the CLSM.

Fig. 4. The results obtained for ċ1 = 0.01, ċ2 = 0.01, and the V1 version of a priori information.
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Fig. 5. The results obtained for c1 = 0.01, c2 = 0.09, and the V1 version of a priori information.

Fig. 6. The results obtained for c1 = 0.05, c2 = 0.05, and the V1 version of a priori information.

Fig. 7. The results obtained for ċ1 = 0.01, ċ2 = 0.01, and the V2 version of a priori information.
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Fig. 8. The results obtained for c1 = 0.01, c2 = 0.09, and the V2 version of a priori information.

Fig. 9. The results obtained for c1 = 0.05, c2 = 0.05, and the V2 version of a priori information.

Table 1. The maximum values of b̂ j , obtained for the V1 version of a priori information (in brackets: the indices of concentrations corresponding to those
values).

BM
σv CLSM

ċ1 ċ1 10−7 10−6 10−5 10−4 10−3 10−2 10−1

0.01 0.01 8.07·10−10 (1) 9.46·10−9 (1) 5.76·10−8 (1) 3.93·10−7 (1) 5.81·10−6 (1) 5.15·10−4 (1) 4.18·10−2 (1) 2.22·10−1 (2)
0.01 0.05 1.31·10−9 (1) 1.41·10−8 (1) 1.01·10−7 (1) 6.74·10−7 (1) 1.42·10−5 (2) 1.45·10−3 (2) 3.98·10−2 (1) 1.14·10−1 (1)
0.01 0.09 1.31·10−9 (1) 1.46·10−8 (1) 1.01·10−7 (1) 6.74·10−7 (1) 2.39·10−5 (2) 2.07·10−3 (2) 4.10·10−2 (1) 1.23·10−1 (1)
0.05 0.01 1.31·10−9 (2) 1.41·10−8 (2) 1.01·10−7 (2) 6.74·10−7 (2) 2.58·10−5 (1) 2.26·10−3 (1) 2.37·10−2 (2) 2.01·10−1 (2)
0.05 0.05 6.69·10−10 (1) 2.58·10−9 (1) 5.42·10−8 (1) 2.38·10−7 (1) 2.82·10−5 (1) 2.82·10−3 (1) 3.00·10−2 (2) 3.90·10−2 (2)
0.05 0.09 6.69·10−10 (1) 4.49·10−9 (2) 5.42·10−8 (1) 3.11·10−7 (1) 2.61·10−5 (1) 2.51·10−3 (1) 2.34·10−2 (2) 2.54·10−2 (2)
0.09 0.01 1.31·10−9 (2) 1.46·10−8 (2) 1.01·10−7 (2) 6.74·10−7 (2) 4.72·10−5 (1) 3.16·10−3 (1) 2.54·10−2 (2) 2.24·10−1 (2)
0.09 0.05 6.69·10−10 (2) 4.49·10−9 (1) 5.42·10−8 (2) 4.43·10−7 (1) 5.21·10−5 (1) 3.26·10−3 (1) 2.97·10−2 (2) 4.02·10−2 (2)
0.09 0.09 7.75·10−10 (1) 1.03·10−8 (2) 6.63·10−8 (2) 5.53·10−7 (1) 4.87·10−5 (1) 3.77·10−3 (1) 2.03·10−2 (2) 2.11·10−2 (2)
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Table 2. The maximum values of ŝ j , obtained for the V1 version of a priori information (in brackets: the indices of concentrations corresponding to those
values).

BM
σv CLSM

ċ1 ċ1 10−7 10−6 10−5 10−4 10−3 10−2 10−1

0.01 0.01 5.33·10−10 (1) 4.80·10−9 (1) 4.32·10−8 (1) 2.88·10−7 (1) 4.55·10−6 (1) 3.94·10−4 (1) 3.42·10−2 (1) 1.65·10−1 (2)
0.01 0.05 0 0 0 2.31·10−8 (2) 1.16·10−5 (2) 1.04·10−3 (2) 3.53·10−2 (1) 8.65·10−2 (1)
0.01 0.09 0 0 1.15·10−9 (3) 2.61·10−7 (2) 1.96·10−5 (2) 1.57·10−3 (2) 3.39·10−2 (1) 9.49·10−2 (1)
0.05 0.01 0 0 0 1.83·10−7 (1) 1.97·10−5 (1) 1.64·10−3 (1) 1.94·10−2 (2) 1.53·10−1 (2)
0.05 0.05 0 0 0 1.67·10−7 (1) 2.28·10−5 (1) 2.05·10−3 (1) 2.45·10−2 (2) 2.88·10−2 (2)
0.05 0.09 0 0 0 3.09·10−7 (1) 1.96·10−5 (1) 1.88·10−3 (1) 1.70·10−2 (1) 2.00·10−2 (2)
0.09 0.01 0 0 1.13·10−9 (3) 3.67·10−7 (1) 3.63·10−5 (1) 2.37·10−3 (1) 2.34·10−2 (2) 1.56·10−1 (2)
0.09 0.05 0 0 0 4.21·10−7 (1) 3.83·10−5 (1) 2.31·10−3 (1) 2.20·10−2 (2) 3.18·10−2 (2)
0.09 0.09 5.34·10−10 (1) 4.69·10−9 (1) 4.24·10−8 (1) 3.57·10−7 (1) 3.94·10−5 (1) 2.64·10−3 (1) 1.54·10−2 (2) 1.55·10−2 (2)

Table 3. The maximum values of b̂ j , obtained for the V2 version of a priori information (in brackets: the indices of concentrations corresponding to those
values).

BM
σv CLSM

ċ1 ċ1 10−7 10−6 10−5 10−4 10−3 10−2 10−1

0.01 0.01 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 4,98·10−2 (1) 4,34·10−2 (1) 1,97·10−1 (2)
0.01 0.05 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 4,97·10−2 (1) 4,64·10−2 (1) 1,04·10−1 (1)
0.01 0.09 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 4,98·10−2 (1) 5,14·10−2 (1) 1,22·10−1 (1)
0.05 0.01 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 4,99·10−2 (1) 4,43·10−2 (1) 2,65·10−2 (2) 2,40·10−1 (2)
0.05 0.05 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 4,99·10−2 (1) 4,50·10−2 (1) 3,16·10−2 (2) 3,90·10−2 (2)
0.05 0.09 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 4,99·10−2 (1) 4,44·10−2 (1) 1,95·10−2 (2) 2,32·10−2 (1)
0.09 0.01 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 4,98·10−2 (1) 3,73·10−2 (1) 2,53·10−2 (2) 2,14·10−1 (2)
0.09 0.05 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 4,98·10−2 (1) 3,76·10−2 (1) 3,42·10−2 (2) 3,92·10−2 (2)
0.09 0.09 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 5,00·10−2 (1) 4,98·10−2 (1) 3,76·10−2 (1) 1,88·10−2 (2) 2,32·10−2 (2)

Table 4. The maximum values of ŝ j , obtained for the V2 version of a priori information (in brackets: the indices of concentrations corresponding to those
values).

BM
σv CLSM

ċ1 ċ1 10−7 10−6 10−5 10−4 10−3 10−2 10−1

0.01 0.01 0 1,31·10−16 (1) 1,20·10−16 (1) 1,20·10−16 (1) 7,17·10−6 (1) 7,54·10−4 (1) 3,22·10−2 (1) 1,39·10−1 (2)
0.01 0.05 0 1,31·10−16 (1) 1,20·10−16 (1) 2,30·10−8 (2) 1,08·10−5 (2) 1,04·10−3 (2) 3,53·10−2 (1) 7,71·10−2 (1)
0.01 0.09 0 1,31·10−16 (1) 1,43·10−9 (3) 1,61·10−7 (2) 1,96·10−5 (2) 1,50·10−3 (2) 3,23·10−2 (1) 9,45·10−2 (1)
0.05 0.01 1,05·10−16 (1) 1,31·10−16 (1) 1,05·10−16 (1) 3,27·10−7 (1) 3,14·10−5 (1) 2,91·10−3 (1) 2,06·10−2 (2) 1,68·10−1 (2)
0.05 0.05 1,05·10−16 (1) 1,31·10−16 (1) 0 1,67·10−7 (2) 3,39·10−5 (1) 2,96·10−3 (1) 2,41·10−2 (2) 2,88·10−2 (2)
0.05 0.09 1,05·10−16 (1) 1,31·10−16 (1) 0 2,79·10−7 (1) 3,57·10−5 (1) 2,71·10−3 (1) 1,45·10−2 (1) 1,84·10−2 (1)
0.09 0.01 3,54·10−11 (1) 1,16·10−16 (1) 4,04·10−9 (1) 5,18·10−7 (1) 5,42·10−5 (1) 3,90·10−3 (1) 2,32·10−2 (2) 1,66·10−1 (2)
0.09 0.05 1,36·10−16 (1) 1,16·10−16 (1) 8,60·10−9 (1) 5,90·10−7 (1) 5,18·10−5 (1) 3,26·10−3 (1) 2.40·10−2 (2) 2,72·10−2 (2)
0.09 0.09 3,34·10−10 (1) 1,16·10−16 (1) 0 4,43·10−7 (2) 5,37·10−5 (1) 3,83·10−3 (1) 1,33·10−2 (2) 1,78·10−2 (2)

7. DISCUSSION AND CONCLUSIONS

The comparison of the BM with the CLSM, based on the criteria related to me-
asurement uncertainty, has been essentially aimed at the assessment of the robustness
of these methods to four influencing factors:

– systematic distortion of spectral data by the limited optical resolution of the ST,
characterised by the apparatus function g(λ);

– random uncorrelated disturbances in the spectral data, characterized by the stan-
dard deviation σv;
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– random correlated disturbances in the spectral data, modelling residual spectra
of components not identified in the analysis, and characterized by the parameter level;

– imprecision of a priori information on the estimated concentrations, characterized
by the variance σv.

The overview of the results, presented in Figures 4–9 and in Tables 1–4, enables
one to notice their consistence:

– The values of uncertainty indicators, obtained for ċ1 and ċ2, are comparable.
– If σv = 10−7, the estimation uncertainty, both the relative bias and the relative

standard deviation, is for the BM by several orders of magnitude lower than for the
CLSM.

– The estimation uncertainty for the BM is growing with σv and it is approaching
that of the CLSM when σv is approaching σv = 10−1.

Taking into account that the interval of a priori expanded uncertainty, correspon-
ding to the latter value is comparable with ca. 50 % of the range of the measurand
variability, one may conclude that this is a very positive feature of the BM. Both
uncertainty indicators, the relative bias and the relative standard deviation, are equally
important because their corresponding values are – as a rule – of the same order of
magnitude. The results obtained demonstrate the significant superiority of the BM over
the CLSM both in terms of the relative bias and in terms of the relative standard devia-
tion. These results show also the importance of a priori information on the solution for
the performance of the BM. As shown in Figures 7–9, the detuning of the parameter

c1
from ċ1 by ±5% has implied the increase of the relative bias of the estimates to a

level slightly lower than that of the bias generated by the CLSM – without affecting
their relative standard deviation. Taking into account that the expanded uncertainty is
composed of the bias and a multiplicity of the standard deviation, one may conclude
that for a variation of concentrations limited to ±5% of their typical values, the BM
may provide significantly more accurate estimates than the CLSM.

The results obtained demonstrate a significant potential behind the BM to en-
hance the effectiveness of the application of low-resolution spectrophotometers for
solving monitoring-type problems that appear in food manufacturing associated with
oil mixing. As a rule, in this type of problems, a considerable amount of statistical
information on the variation of the monitored concentrations is available and may be
used as a priori information for the BM. The gains in accuracy of estimation depend on
the precision of this information; evidently, false information is worse than its absence.
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Appendix: List of mathematical symbols

A – a normalization factor of the a priori probability distribution of the random vector c;
argv – the operator “solving” the equation or optimization problem, whose

description follows, with respect to a variable v;
αn – a vector of parameters of the “static” characteristic of the ST;
bj – the relative bias of the estimator of the concentration cj, j = 1,...,J; b̂ j – its estimate;
ċ j – the exact value of the concentration cj;
c – vector of the concentrations of J components of a substance to be analyzed

(i.e. of an analyte); c = [c1 ... cJ ]T ;

c – the randomized vector of the concentrations; c =
[
c1...cJ

]T
;

c
– a vector parameter controlling the mean value of the a priori probability

distribution of the random vector c
C – et of constraints the vector of concentrations is subject to;
CAT[•] – the operator of absorbance-to-transmittance transformation;
δĉ j – the relative error of the estimate ĉ j of the concentration cJ ; δĉ j = (ĉ j − ċ j)/ċ j;
E[•] – the operator of “computing” the mean value of a random variable or random vector;
ε – the random vector modelling samples of the residual spectrum corresponding to unexpected

or neglected components; =
[
ε1...εM

]T
;

fc(c) – the a priori probability density function for c , the so-called prior;
fỹTr

(
ỹTr

)
– the a priori probability density function for ỹTr;

fc|ỹTr

(
c
∣∣∣ỹTr

)
– the a posteriori probability density function for c conditional on ỹTr the so-called posterior;

fỹTr |c
(
ỹTr |c

)
– the probability density function for ỹTr conditional on c; the so-called likelihood;

F (ŷn ; αn) – the inverse “static” characteristic of the ST;
gn(λ) – the response of the optical part of the ST to a monochromatic optical signal observed

at the n th output of the ST;
η – the randomized vector of additive residuals representing the total uncertainty of data

modelling; η =[η
1
...η

N
]T ;

inf{•} – the operator “computing” the infimum of the sequence or function in brackets {•};
J – the number of the components of the analyte;
level – an indicator of the level of the residual spectrum;
λ – the wavelength;
λmin, λmax – the minimum and maximum wavelength values limiting the wavelength range of the ST;{
λ′m

}
– the sequence of wavelength values corresponding to the spectrum sampling

within the numerical algorithms;
{
λ′m

} ≡ {
λ′m |m = 1, ...,M

}
;

{λn} – a sequence of wavelength values corresponding to the data at the ST output;
{λn} ≡ {λn |n = 1, ...,N };

M – the number of samples the spectrum is represented within the numerical algorithms;
N – the number of raw data provided by the ST;
µc – the mean value of the random vector c; µc = E

[
c
]
;

µε – the mean value of the random vector ε, µε = E
[
ε
]
;

R – the number of repetitions of each numerical experiment;
s j – the relative standard deviation of the estimator of the concentration cj, j = 1,...,J;

ŝ j – its estimate;
sup{•} – the operator “computing” the supremum of the sequence or function in brackets {•};
σc – the standard deviation of an element or of the jth element of the random vector c,

j = 1,..., J;
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σv – a scalar parameter controlling the standard deviation of the a priori probability
distribution of the random vector c;

ση – the standard deviation of an element of the vector η;
v (c) – a (J - 1) dimensional vector whose elements are defined by the rational transformation

of the finite interval into the infinite interval (- ∞; + ∞);
x(λ) – the intensity spectrum of the ST input optical signal;
xAb(λ) – the absorbance spectrum of the analyte;
xAb

j (λ) – the normalized spectrum of the j th component of the analyte; j = 1, ..., j;
xTr (λ) – the transmittance spectrum of the analyte;
xAb

j – the vector containing M equidistant samples of the spectrum

xAb
j (λ), j = 1, ..., J; xAb

j =
[
xAb

j
(
λ′1

)
...xAb

j
(
λ′M

)]T
;

xTr – the vector containing M equidistant samples of the transmittance spectrum x(λ);

xTr =
[
xTr (λ′1) ...xTr (λ′M)]T

;
XAb – the matrix composed of the vectors xAb

j , j = 1, ..., J; XAb =
[
xAb

1 ... x
Ab
J

]
;

ỹ – the raw intensity-domain data; ỹ =
[
ỹ1...ỹN

]T ;
ŷ – an estimate of the raw data ỹ generated by the mathematical model of those data;

ŷ =
[
ŷ1...ŷN

]T ;

ỹAb – the raw absorbance-domain data; ỹAb =
[
ỹAb

1 ...ỹ
Ab
N

]T
;

ỹTr – the raw transmittance-domain data; ỹTr =
[
ỹTr

1 ...ỹ
Tr
N

]T
.


