METROLOGY AND MEASUREMENT SYSTEMS
VOL. XV, NUMBER 2 (2008)

Tomasz Barszcz

AGH University of Science and Technology
Department of Robotics and Mechatronics
Krakéw, Poland
e-mail: tbarszcz@agh.edu.pl

PROPOSAL OF ARCHITECTURE OF DISTRIBUTED VIBRATION MONITORING
SYSTEM WITH FLEXIBLE ARCHITECTURE AND REMOTE ACCESS SUPPORT

With advances in IT technologies even complex machines with several gears and bearings,
running at varying rotational speed can be efficiently monitored with an algorithm consisting of a
combination of signal envelope and synchronous resampling.

For implementation, robust advanced software development technologies are applied, based
on an object-oriented approach, supported by formal methodologies, like UML. Another concept
important for distributed systems is middleware, like RPC or DCOM.

The paper presents a proposal of the architecture of the distributed vibration monitoring and
diagnostic system, based on the approaches mentioned above. Principal components are described
and their functionality is discussed. Special interest was put on flexibility of architecture and
optimization of remote access. XML was proposed as universal and efficient means of configuration
storage. The structure of the monitored machine should also be stored in XML. A proposal of such
a data structure is described for a gas compressor.

Another key component is the database server. It needs to handle multiple databases and multiple
users, delivering fast and reliable data. Vibration signal handling can be more efficient when signals
are processed on the server side. Efficiency is essential when remote access to vibration data is
required and data link is limited. Such a mechanism, based on plug-in approach, is proposed and
described.

Finally, the paper presents a case study which describes the installation of the system on a gas
compressor. The measured data are presented after different processing algorithms. High resolution
envelope order spectrum was able to detect the bearing failure.

Keywords: distributed system, vibration monitoring, configuration, database

1. INTRODUCTION

Fast development of machinery state assessment over the last decade leads to rising
demand for more accurate monitoring and diagnostic systems for rotating machinery.
Since in almost all cases such an assessment is based on dynamic state measurements,
those systems are vibration monitoring and diagnostic systems (later in the paper
referred to as VMDS). At the same time one can observe quick improvement of the

178 Tomasz Barszcz

processing capabilities (understood first of all as the CPU speed and memory and disk
volumes), which causes a drop of costs of VMDS. On the other hand, it is now possible
to implement even very sophisticated diagnostic algorithms in such systems and apply
them for a very wide spectrum of machinery [1]. An universal algorithm for vibration
monitoring of a varying-speed machine with gears and bearings was presented in [2].
This algorithm is shown in Fig. 1.

Data acquisition >
Yibration data Extraction of
resampling signal features
_>
Envelope
calculation | TP
State !
detectian ’ \ 4 i

Alarm detection

v

Motification

Storage to
database

Fig. 1. Data procesing algorithm of the monitoring and diagnostic system [2].

The algorithm starts with data acquisition, both vibration and process values. For
the detection of bearing faults, envelope calculation is performed [3]. For supervision
of varying speed machines, both vibration signals and their envelopes are resampled.
During resampling linear interpolation is used, since it provides an optimal balance
between processing power and spectrum distortion [4]. Several signal features are then
extracted from all signals (normal and envelope, both in the time domain and in the
order domain). A discussion of selection of such features can be found in [3]. A special
element of state assessment is state detection. Machine behavior depends strongly on
process parameters like speed, load, temperatures and like. It should be possible to
configure several states based on those values. If a state is detected, a set of limits
for this state is activated and a separate alarm detection algorithm checks calculated
features against limits.

The software implementing the algorithm should follow modern object-oriented
methodologies and should fit a possibly wide spectrum of various machines. This
goal can be achieved if the system architecture will be distributed and if appropriate
software technologies will be used. In the next chapter modern object-oriented tech-
nologies will be presented. Then, distributed and flexible software architecture will be
proposed. Since development and behavior of the system depends on the structure of
its configuration and data storage solutions, they will be discussed in the following
chapters. The paper is concluded with final remarks.

Proposal of architecture of distributed vibration monitoring system with... 179

The proposed algorithm was implemented as the computer software in the VMDS
and will be described in this paper. The work was performed within the EU co-funded
project number WKP_1/1.4.4/1/205/6/6/569/2006, “The functional model of the distri-
buted system for the vibration diagnostics”. The test installation was commissioned on
the natural gas compressor.

2. MODERN SOFTWARE DEVELOPMENT TECHNOLOGIES

Nowadays modeling of complex software systems uses a number of advanced
software development ideas and technologies, most important of those is object me-
thodology [5]. It provides means for achieving direct compatibility between the problem
structure and tasks and a program code organization, being a very important feature
from the developers point of view. A class concept plays a fundamental role in object
methodologies. A class is a grouping of both properties and methods relevant to a
well-separated part of a problem (an object or a process). Properties describe a state
of an object/process, methods are essentially procedures which are allowed to execute
on an object to perform certain actions. Both properties and methods can be privately
or publicly accessible, thus allowing to control the rights to execute certain procedu-
res. For modeling of complex systems the inheritance mechanism is used. It allows
to extend/redefine the behavior of base class, through adding of new properties and
methods, or writing virtual versions of existing methods.

In the software design process, the strong requirement for a modeling technolo-
gy independent of the programming language became obvious [6]. This requirement
is growing, as projects become bigger and the expected robustness level of systems
increases. The role of such a technology is now served by UML (Unified Modeling
Language). It is a meta-language, used for describing the structure of the whole software
system, its parts called packages and their relations. The UML model is created using
a graphical shell. It contains classes and connections representing relations between
them. The UML model may consist of diagrams of the following types: static class
diagram, collaboration/interaction, state, sequence and others. Most of them can be
automatically translated to code in a chosen language (typically C++ or C#).

A most recent approach to the design and implementation of software systems is
the component object model, closely connected with the concept of the middleware [7].
The idea of components is to embed in the binary code of a component the information
on every interface element, which can be called by external software components. This
information has a special format which can be automatically read and translated into
text files, defining the interface to the component. This is an input information for
programs which generate the code of “wrapper classes” in the chosen language. This
allows for using the component by other components or applications. So far, a few
standards of component object model are established: COM family from Microsoft
Corp. which is native for the Windows operating system, and CORBA, which is more

180 Tomasz Barszcz

independent from an operating system and therefore more flexible. In many applications
simpler technologies, like RPC, can be also used with less overhead [8].

Very important features of the object-oriented middleware approach were: encap-
sulation, hiding unnecessary variables from other objects, inheritance, which allowed
to create hierarchies of objects of increasingly complicated features or different variants
and polymorphism, where methods can be required by a base class, but are defined
(or implemented) by a derived class at a later time. This innovation was followed
by new design tools (based on UML technology), where objects could be defined,
their interactions optimized and tested. This situation was quickly followed by ano-
ther important feature — reusability, when objects became called components. Such
components would be developed once and then used in a variety of projects. This
brings benefits of decreased time and cost of development and higher reliability, as
components are well tested. Currently, most of development environments come with
a variety of ready-to-use components. A variety of components are available from
independent software companies.

Another important change happened when computer networks became popular,
which resulted in the development of distributed systems. In such systems, particular
tasks of the monitoring and diagnostic systems were divided into several processes.
These processes could be running on separate computers, what gave advantages of
higher reliability, shorter development times and better scalability, to name just a few.
In results of trends described above, a distributed VMDS consists of several processes,
which in turn are built from components. Distributing system components also resulted
in flexibility, as the system could be suited for a particular task by reconfiguration or
modification of its components. An example of such flexibility will be presented in
next chapters.

3. PROPOSAL OF A DISTRIBUTED SYSTEM ARCHITECTURE

The following chapter will present a proposal of the software architecture of a
vibration monitoring and diagnostic system. First of all the design of the software
architecture of the VMDS system should be flexible and open for future extensions. To
achieve this, the system must be modular. It must be possible to modify the number
of cooperating modules depending on the application and to add new modules when
necessary. Figure 2 presents the proposal of such an architecture.

Each of the components in the picture above plays an important role in the system.
Table 1 presents a short description of their functionality:

The Data Hub (DH) is the component which is the main data exchange hub in
the system. Any data exchange between any components in the VMDS always needs
the DH as the connection point. Such an approach allows to develop each module
independently from the others, since it is enough to follow the software interface to be
able to attach a new module to the VMDS. If we have a number of software modules

Proposal of architecture of distributed vibration monitoring system with... 181

System 1/ Driver 1 I/ Driver 2 Data
Mmanager Processor
Data hub >
Limit checker Database hessenger [e1u]]
SEMER

Fig. 2. Propesed software architecture of the distributed vubration monitoring and diagnostic system.

Table 1. Brief description of the distributed vibration monitoring and diagnostic system.

Data hub Software component, setting standards for inter-module communica-
tion. It must be network-transparent, so the system can be distributed.
There are several existing middleware standards on which the library
can be built (e.g. RPC, CORBA, COM).

System manager Main component, starting up all the other modules and supervising
the whole system. Must have watchdog functionality, i.e. periodical
checks whether all the modules are “alive”. The system manager is
also responsible for management of the configuration.

I/O Driver(s) Data input/ output modules. Depending on hardware, it can be a plug-in
card, VME/ cPCI card, CAN or Ethernet module etc.; it detaches all
hardware-specific functionality from the rest of the system

Data processor Various data processing depends very much on application. In simplest
cases this can be a statistic calculation, in cases more complicated e.g.
system identification. There could e.g. exist the possibility of using
procedures from MATLAB/ SIMULINK (through RTW package).

Limit checker The component which detects if any limit was violated. If such a vio-
lation is detected, an event to other components should be sent.

Database server The largest components implementing the database. This component
will be described in a separate chapter.

Messenger Sends messages when predefined condition occur. Messages can be:
a TCP/IP packet, e-mail or SMS. This component is very useful in
monitoring systems which are not supervised all the time by on-site
operators.

Graphical User Interface A separate application, presenting data in the system on a variety of
plots. GUI can be also run on a remote machine. This component will
be described in a separate chapter.

182 Tomasz Barszcz

which share a common VMDS interface, it is possible to exchange a module, or even
to change the structure of the whole system without changes in the software, but only
in the configuration.

The basic function of the Data Hub is data exchange. The DH is not meant to store
the history of channels, but only current value buffers. Various modules can share data
by writing them in and from those buffers. Sometimes some components require short
historical buffers, e.g. to calculate statistical values. Those buffers have only auxiliary
meaning, to calculate the resulting values. The following basic data types are supported
by the DH:

— scalar values (double precision floating point),

— binary values,

— events,

— dynamic values (i.e. vibration waveforms).

Scalar and binary values represent a single value from a sensor, like a single
temperature value or pressure readout. It is the most popular type of data, existing also
in e.g. DCS or SCADA systems. Events are data type describing anything that can
happen in the system, typically not having any particular value, but having a defined
moment in time. Good examples can be starting down the VMDS or detecting an
alarm in one of channels. Events are used to inform selected modules about e.g. the
completion of a task by a module. Events are also used to synchronize the whole
system. Dynamic values occupy the largest space in memory, as they store waveforms
of vibration signals. In the general case, however, such a value is defined as a buffer,
which has no particular structure. Such a structure is known only to modules which
are writing or reading such data. For the DH it is treated as a block of binary values
of given length. For future modules this data type can be used for many other data,
like e.g. images. In the current implementation it is used only for vibrations, where
one dynamic data record holds the result of one sampling session. For example it can
hold 25000 samples taken during one second from one channel.

Each data type stored in the Data Hub has three fields, listed below:

— time stamp
— status
— value

The time stamp holds the time of the readout. It is clear for scalar or binary
values, but for dynamic data it is the beginning of sampling of the record. The status
holds additional information about the data. Possible status values with descriptions
are presented in Table 2.

A measurement error can take place when the read value is out of the measurement
range or when a sensor failure is detected. In such a case, no further data processing
makes sense. The N/A status is typically given in cases of more advanced calculations,
when input data are correct but the resulting value cannot be calculated. One example
of such a case is calculation of phase, when the amplitude is very close to zero. Then,
the value of phase does not make sense and should not be evaluated.

Proposal of architecture of distributed vibration monitoring system with... 183

Table 2. Possible status values in the Data Hub.

Status Description

OK Correct data, no limit violations
ALERT Correct data, alert detected
ALARM Correct data, alarm detected
ERR Measurement error

N/A Value cannot be evaluated

The System Manager (SM) component controls the operation of the whole system:
it starts the whole system, i.e. launches processes of all defined components and execu-
tables and verifies the correctness of the startup process. After that is begins to check
periodically the operation of all the modules. When a module does not respond, it will
be deleted and restarted. In other words, this component performs the typical operation
of a software watchdog. Another function of the SM is configuration management. It
is the central place in the whole system, where all configuration information can be
obtained. Since the structure of this information is very important, it is described in a
separate chapter.

I/O Drivers (I/O) are modules which connect to the hardware and collect me-
asurements. On the input side they deal with hardware-specific commands, typically
provided by the hardware manufacturers. On the output side they respond to the Data
Hub with the recently acquired data. Data are provided on a configured, timely basis,
i.e. one complete data packet is sent to the Data Hub every defined period. Such a
packet consists of samples from vibration channels and values from process channels
(e.g. temperatures, pressures etc.). One has to add that the name of Driver can be
misleading, and it should not be mixed with hardware drivers, provided by hardware
manufacturers. Hardware drivers are libraries, which are intended to be used by appli-
cations using the hardware. In this case, this application is also called the Driver. This
application is specific to the particular system.

Data Processor (DP) is the data analysis module, which creates new channels
calculated from channels acquired by the Driver. There are three groups of calculations
performed by the standard implementation of the DP:

— statistical calculations, like: mean, standard deviations,

— algebraic calculations, which are user-defined operations to calculate channels
which are not directly available, like: “rpm = Freq * 607, “AT = T_deep — T_shallow”
or similar; it is very helpful to define such calculations during the configuration
phase, without changing the source code of the system,

— vibration signal parameters, like: peak-peak amplitude, rms value, amplitude of
N'"™ harmonic; this calculation is typically the most CPU-demanding, as it requires
FFT, often in order to monitor varying speed machines it is necessary to resample
vibration signals to get from the time-to the order-domain; for bearing monitoring it

184 Tomasz Barszcz

is necessary to obtain the envelope of the signal; all these operations are performed

within the module.

After calculation, channel values are returned to the Data Hub for further proces-
sing. It is important that it is possible to run more than one Data Processor module.
Apart of standard calculations listed above, using the DP approach is a simple way
to prototype new diagnostic algorithms, unless they require very sophisticated data
processing. If this is the case, it is possible to develop a new module dedicated for
the new method. In such a new DP module (which could have a different name)
more complicated algorithms, e.g. system identification would be implemented. Also,
there could e.g. exist the possibility of using procedures from MATLAB/ SIMULINK
(through the RTW package).

Limit Checker (LC) is the module which performs two basic operations: detection
of the machine state and detection of alarms. Since the behavior of the machine often
depends on the operating state more than on its technical state, it is very important to
divide the operation of the machine into states and analyze data from each state. Good
examples are turbosets, which have two distinct states: a transient and a steady-state.
Another one are wind turbines, where some types operate on two levels of power most
of the time. The method of state definition is in fact only one of possible methods
of monitoring machines which change their operating point. Such states are typically
defined by rotational speed and output power, but it is better not to restrict the definition
of state to any specific set of parameters. The method of states is simple to understand
and yields good results.

When states are defined, for each scalar channel value (including calculation re-
sults) one can define limits. Parameters of each limit are presented in Table 3.

Table 3. Limit parameters in the Limit Checker module.

Parameter Description

Name String uniquely describing the limit

State Machine state in which the limit is to be active

Channel Measurement channel which is evaluated

Value Numerical value of the limit to which the value read from the channel

will be compared

Operator Comparison operator (,,;” or ,,;,”)

Importance Two levels are available: Alert and Alarm

Hysteresis Protects against multiple detections, when a value crosses the limit
Detection delay Protects against random peaks in the signal

All presented parameters are almost self-explanatory. Channel name is a link of
limits to channels, and state is the link to states, if we want to describe limits in terms
of relational databases. In this approach, limit is a many-to-many relation between
states and channels.

Proposal of architecture of distributed vibration monitoring system with... 185

The number of limits is quite high, as there are separate limit objects for each state
and each channel. Each limit can have a severity level assigned, like: Alarm, Alert,
Info. During system operation the Data Hub sends periodically vectors with current
channel values to the Limit Checker module. In response the Limit Checker returns
the same vector with a set status filled set. In parallel, when the start or end of a limit
violation is detected, the Limit Checker sends the event object back to the Data Hub,
from where events are forwarded to other modules.

Data Storage is the module which encapsulates the central database of the system.
The Data Storage module is called periodically by the Data Hub with requests to write
the recent data, which were tagged as “to be written”. Apart of that, graphical user
interface(s) asynchronously read various data, depending on users’ requests. To achieve
high performance the Data Storage module was implemented as the proprietary, high
speed database.

The Messenger module sends messages to the remote users, when a predefined
condition occurs. This component is very useful in monitoring systems which are not
supervised all the time by operators on site. Messages can be sent through: TCP/IP
packets, e-mail or SMS. It is possible to send messages in two modes:

— 1immediate, in case of critical alarms
— periodic, to send statistics of system operation and to ensure that it is running
correctly

If notifications are to be sent through the e-mail, the module establishes the TCP/IP
connection (unless there is a permanent one), then connects to the e-mail server and
sends the message. The mail contains all important information describing the event.
When there is no possibility to use mail, the module can send a SMS message via
a specialized modem. Using SMS brings some limitations, since the size of a single
SMS cannot exceed 160 characters. Also, to send it the modem must be equipped with
a SIM card which must be activated and periodically paid.

4. STRUCTURE OF CONFIGURATION DATA

An important part of the project was to propose an universal and efficient method
for configuration storage. Storage of configuration is performed by the System Manager
module. The configuration of the system is divided into two branches: configuration of
the measurement and configuration of the machine. In the beginning the first part will
be shortly described, then the second one will be described in more detail. All configu-
ration of the system is stored in XML format. The XML (eXtensible Markup Language)
is an open standard, recommended for files portable among different platforms [9]. In
its general form it can be applied for numerous tasks, such as data and configuration
of various computer systems. Internal structures of XML suit the storage of graphs
very well. Additionally, application of XML is efficient, because many ready-to-use
software components for XML handling are available. Configuration of the VMDS

186 Tomasz Barszcz

consists of several XML files, describing parameters necessary for those modules. All
modules store the configuration in tree structures, where e.g. I/O drivers store nodes
describing measurement channels and their parameters, the Limit Checker stores node
parameters with defined limits.

Apart of application modules, the configuration must describe the monitored ma-
chine also in XML format. Machines can be divided in a natural way into components
like: AC motor, gearbox, pump etc.. Such a division is multi-layer, as often compo-
nents are divided into sub-components. Another group of configuration information
are measurement channels, as they are sources of data. They can be organized as a
separate branch in the configuration tree, or they can be assigned to particular machine
components. Since more than one component can be described by a single measure-
ment channel, the optimal solution is to store all channels as a separate branch and
to place references (or links) to these channels in parts of XML describing machine
components. Based on this approach, configurations of several machines were prepared.
Here is an example of such a configuration for the gas compressor.

a) File header
b) Root nodel
¢) Installation — name, description, location
— Flat list of measurement channels
— Monitored compressor — name, description etc.
m Process channels node
e PV Channel 1 with its parameters
e PV Channel 2 ...
° ..
e PV Channel n ..
m Vibration (dynamic) channels node
e VIB Channel 1 with its parameters
o+ List of all defined analysis with its parameters
e VIB Channel 2 with its parameters
«+ List of all defined analysis with its parameters
o ..
e VIB Channel m with its parameters
¢ List of all defined analysis with its parameters
— Machine structure — list of components
— Gas compresso
m AC motor
e List of assigned measurement channels, with assigned analysis
° ..
m Gearbox
e List of assigned measurement channels, with assigned analysis
° ..

m Compressor

Proposal of architecture of distributed vibration monitoring system with... 187

o List of assigned measurement channels, with assigned analysis
...

m Bearings
e List of assigned measurement channels, with assigned analysis
...

The proposed configuration structure has several advantages. It is logically divi-
ded into parts which are directly read by appropriate modules. Apart from dedicated
configuration tools, such a file can be also edited with an external XML editor, like
e.g. XML Edit (freeware XML editor). Storage of configuration in a tree structure
brings clarity of data presentation. In the user interface it is possible to display the tree
structure, as presented above. This can serve for quick navigation if a channel should
be opened. Also, if a problem is detected (e.g. limit violation or sensor failure), then
such an information can be propagated from a source node in the tree to the root node.
This gives a very efficient tool for the user to quickly find the reason of the problem.

5. DATABASE SERVER WITH PLUG-IN MECHANISMS

Data Storage is the module which encapsulates the central database of the system.
It is possible to use various database types, e.g. a relational SQL database, flat file —
based or a dedicated one. Regardless of the implementation, the database must store
different types of data. The main data types are:

— vibration data: very large, carry most information, but quickly consuming disk
space; there are several ways to limit the amount of data, e.g. data can be com-
pressed (or only spectra are stored), data can be written rather seldom,

— scalar data: standard float type data, can be stored every few seconds/ minutes; such
a form is used to store vibration signal parameters and the output from diagnostic
modules,

— event data: smallest size, stored asynchronously when an event occurs (e.g. an
alarm violation is detected).

The Data Storage module is called periodically by the Data Hub with requests to
write the recent data, which were tagged as “to be written”. Apart of that, graphical
user interface(s) asynchronously read various data, depending on user(s)’ requests. The
structure of the Data Storage module is presented in Fig. 3.

The central point of the module is the database engine which manages all the
databases in the system. There can be more than one database attached, as in the
typical application the following databases are configured:

— alarm database — storing all alarms and data recorded when an alarm was detected,

— operational database — storing data periodically, based on time periods,

— reference database — storing data necessary for comparison with a known “go-
od state”; data to this database are written only on user request, e.g. right after
installation or modernization of the machine.

188 Tomasz Barszcz

to Data Hub
Interface module |<_'
Current data ‘*l ,
buffer ¢ Plug-in
libbrary
|_ Database engine

Reference
database

Alamm
database

Operational
database

Fig. 3. Structure of the Data Storage module.

When several databases are attached, it is easily achievable to apply different
circular buffer policies to these databases. The database server must implement a
circular buffer, which will automatically overwrite the oldest data. Such overwriting
must depend on the type of data. For example, operational data carry the smallest
amount of diagnostic information and should be overwritten as the first ones. Alarm
data are much more important and must be kept for longer periods. Reference data are
very small, but very important and should never be overwritten.

Another important mechanism proposed for this database are plugins, which im-
plement analysis of the data on the level of the database server. In plugins data are
post-processed (if necessary) before they are returned to the requesting module (usually
the User Interface). This technique is used predominantly for handling vibration data.
When UI requests a spectrum, it is often very ineflicient to send back the whole raw
vibration data and then perform calculation of spectrum in the UL The problem comes
from the fact that raw vibration data can contain 1e6 samples (i.e. ca 2MB of data)
and the UI only needs to display a maximum of 1000 lines of spectrum, as it is the
horizontal size of most screens. The overhead in data transfer is in the range of 1000.
Instead, the UI requests the spectrum with given input arguments (frequencies of first
and last line, line resolution, ...) and calculations are performed at the server side by
plug-in. This technique is crucial for efficient access from remote locations and will
be presented in the case study.

For high performance the Data Storage module is a specialized, proprietary da-
tabase. It does not use any standard SQL (Structured Query Language) engine. It
implements indexes and basic queries, but several higher level features, typical for
SQL, are not implemented. For example, transactions are not supported. It is a reaso-
nable approach, as transactions are important in financial or management systems and
have little application in data acquisition/ processing.

Proposal of architecture of distributed vibration monitoring system with... 189

6. CASE STUDY - DETECTION OF A BEARING FAILURE IN A GAS
COMPRESSOR

The described VMDS was installed on a 4 cylinder, natural gas compressor on
an oil platform. The compressor was driven by an AC motor coupled directly to the
compressor shaft. The compressor had several failures of rolling bearings, which led to
forced outage and resulted in loss of production and profits. Bearing faults were ring
defects, inner or outer. The role of the system was to perform high resolution online
spectral analysis of the vibration signals in order to detect and track the frequency
component generated by the faulty bearing. An additional requirement was the ability of
efficient remote access, when the only communication medium was a GPRS connection
with a practical data transfer speed of 20-30 kbps. Therefore, optimization of data
transfer was essential.

The following plots will present an analysis of the compressor, when the fault in
the rolling bearing was developing. The characteristic frequency of the outer ring fault
was calculated as 8.14X (referenced to the fundamental shaft speed). This frequency
was calculated based on measurements on-site, as no manufacturer data were available.
The following formula was used to obtain the characteristic frequency [3]:

f:gfr(l—%cosa). (D

Such a procedure can have a significant error which will be discussed later in the
paper.

Figure 4 presents the spectrum of the vibration signal from channel 8 whose sensor
was mounted directly over the investigated bearing. The other vibration channels also
showed the existence of this fault, but here it was the strongest. The spectrum has a
resolution of 1 Hz and is strongly dominated by high harmonics of the fundamental
shaft frequency. As the rotational speed was varying, the spectral lines showed some
level of a “smearing effect” [10]. Also the influence of a structural response can be
seen in the range 450 — 800 Hz. No bearing fault can be detected on the basis of this
plot.

As the next step in the algorithm, the vibration signal is resampled, so that an equal
number of samples per revolution is obtained. Next, the order spectrum is calculated
(see Fig. 5). Since small variations of the rotational speed were cancelled, the harmonic
lines are much sharper than in Fig. 4. Nevertheless, no sign of a bearing fault can
be seen. There are small spectral lines around order 11-12, but there is not enough
evidence to bind it to any kind of malfunction. Bearing faults are best visible in the
envelope of the vibration signal (see algorithm from Chapter 1), therefore such an
analysis was also implemented into the system. Figures 6 and 7 present the envelope
spectrum and envelope order spectrum of the signal, respectively. Figure 6 already
shows the existence of additional spectral lines around 100 Hz, which is equivalent to
ca. order 8. In Figure 7 it can be seen that this component is slightly above the 8"

190 Tomasz Barszcz

| |
| | | i | | | 1] i
'.!III.'._ \-T. ,"Ill i -_.-'"4_5" H b mh r._“,l_r!"'l'll.l-',

Fig. 4. Spectrum of the vibration signal on channel 8 (compressor bearing.

order. The zoomed spectrum, which is presented in Fig. 8, shows additional details.
The frequency of the component is 8.34X and is slightly smeared, which leads to the
conclusion that this line is caused by the outer ring ball pass. The frequency is slightly
varying, since rolling bearing elements are not moving in a deterministic way but show
some random behavior [11]. The frequency is slightly different than the one calculated
from documentation, since there is a 2.4% frequency shift (8.34X measured vs. 8.14X
calculated). This is most probably caused by bearing dimensions measurement errors.
Moreover, other data sets showed some frequency shift which was probably caused by
a change of the angle of the bearing.

Al JuHLLL,J{,,JM,Jut‘MJ.WL.LHLMLMW.JAL_JnAn

Fig. 5. Order spectrum of the vibration signal on channel 8.

Proposal of architecture of distributed vibration monitoring system with... 191

| :

bl
|- | s

sl AR Wk |
o Y A \.a-..;".f ATTRRIRR

Fig. 6. Envelope spectrum of the vibration signal on channel 8.

H f“h L i

Fig. 7. Envelope order spectrum of the vibration signal on channel 8.

Figures 5-8 present the analysis of a single vibration signal. For a broader picture,
showing the evolution of the malfunction over time, a trend plot is necessary. Figure
9 presents such a trend plot, showing the energy of the band in the envelope order
spectrum, calculated around the 8.34X. The band was configured so that it does not
include very strong harmonics of the fundamental frequency. The trend plot shows
a stable vibration level assigned to the outer ring until around 30.12.2007, when the
machine was stopped. After startup on 1.01.2008 machine showed an increased level
of vibration in the monitored band. The level was varying, but in general was higher
than in the period before stand-still. The machine was stopped on 9.01.2008 and the
bearing was inspected. Inspection revealed increased wear of the outer ring race, but

192 Tomasz Barszcz

Fig. 8. Zoomed envelope order spectrum from Fig. 7.

the level did not require a repair. The machine was started again under constant human
supervision.

Fig. 9. Trend of the energy in the band in the envelope order spectrum, calculated around the 8.34X
(outerring ball pass).

7. FINAL REMARKS

The paper presents an innovative architecture of the flexible distributed vibration
monitoring system. Another important novelty is the plug-in mechanism which can
be used to dramatically limit the amount of data sent to the graphical user interface.

Proposal of architecture of distributed vibration monitoring system with... 193

This functionality is a must for remote access. The proposed architecture was efficient
enough to implement very complex processing algorithms, including synchronous re-
sampling and enveloping. The system worked for 16 channels with 25kHz sampling.
The system was developed on hardware which was available off-the-shelf, so there was
no need for development of any specific hardware. Further research over the proposed
architecture of the system will be focused on the development of novel algorithms
and their implementation in the data processing modules for specific purposes. Such
modules can be e.g. new diagnostic support modules, i.e. for the determination of limit
values, based on history of the data.

8. NOTATION

IT —Information Technology
UML - Unified Modeling Language
RPC — Remote Procedure Call
DCOM - Distributed Component Object Model
XML - eXtensible Markup Language
VMDS - Vibration Monitoring and Diagnostic System
CPU - Central Processing Unit
COM - Component Object Model
CORBA - Common Object Request Broker Architecture
DCS - Distributed Control System
SCADA — Supervisory Control And Data Acquisition
SQL - Structured Query Language
UI — User Interface
[— rotational speed of the shaft [Hz],
a — bearing load angle, D — bearing diameter, d — rolling element diameter, n — number
of rolling elements.

REFERENCES

1. Barszcz T.: Monitoring and diagnostic systems for machinery. Wyd. ITE, Radom 2006. (in Polish)

2. Barszcz T., Uhl T., Hanc A.: “Proposal of concept of distributed vibration monitoring system for the
set of fans”. Proc. of 19" international congress COMADEM, Lulea, Sweden, 2006, pp. 1-9.

3. Klein U.: Vibrodiagnostic assesment of machines and devices. Stahleisen Verlag, Duesseldorf 2003.
(in German)

4. McFadden P. D.: “Interpolation techniques for time domain averaging of gear vibration”, Mechanical
Systems and Signal Processing, vol. 3, no. 1, 1989, pp. 87-97.

5. Uhl T,, Barszcz T., Hanc A.: “Mechatronics in design of monitoring and diagnostic systems”. Key
Engineering Materials, vols. 245-246, Trans Tech Publications, 2003, pp. 381-390.

6. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns, Elements of Reusable Object- Oriented
Software, Addison-Wesley Pub. Co., 1995.

194

11.

Tomasz Barszcz

Birmann K. P.: Reliable Distributed Systems: Technologies, Web Services and Applications. Springer
Science and Bussiness Media, 2005.

Bloomer J.: Power programming with RPC, O’Reilly, 1992.

St. Laurent S., Fitzgerald M.: XML Pocket Reference. O’Reilly, 2005. [10.] Ho D., Randall R. B.:
“Optimization of bearing diagnostic techniques using simulated and actual bearing fault signals”.
Mechanical Systems and Signal Processing, vol. 14, no. 5, 2000, pp. 763-788.

Antoni J., Randall R. B.: “Unsupervised noise cancellation for vibration signals: part II — a novel
frequency-domain algorithm”. Mechanical Systems and Signal Processing, vol. 18, no. 1, 2004, pp.
103-117.

