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AN OPTIMAL DEGREE OF COMPLEXITY OF A SIMPLIFIED MODEL

A simplified model can be created using one of the already known mathematical methods
(series expansion of a function, truncating continued fraction expansion [1] and so forth) if the
analytic form of the full model is known or using regression to determine the optimal parameters
of the model with arbitrary assumed structure. If the measured accuracy of input variables can be
obtained, the optimal degree of complexity of the model can be determined.
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1. INTRODUCTION

A phenomenon model which links the input variables xi for i = 1, 2, . . . , n with
an output variable y can be given in the form y(xi), too complicated for practical
applications. In this case a simplified model can be created in the form of different
functions ym1(xi), ym2(xi), . . . , ymr(xi). The degree of model complexity and its accuracy
increase with the growth of the degree expansion r. When a phenomenon is described
by a set of experimental results y j for j = 1, 2, . . . ,m obtained for a range of input
variables (x1, x2, . . . , xn) j then the model structure can be assumed arbitrary as a
function ym(xi, p1, p2, . . . , pr), where pk for k = 1, 2, . . . , r are the model parameters
obtained by regression basing on the measured results [2, 3]. The mean square error
of the simplified model defined by:

D2 =

∫ ∫ ∫

{ymr (xi) − y (xi)}
2dx1dx2 ... dxi , (1)

decreases with an increasing r and a well chosen structure of the simplified model.
Taking into consideration that input variables xi are given with the determined

accuracy ∆xi the error is expressed by equation:

D2 =

∫ ∫

. . .

∫

{ymr (xi,∆xi) − y (xi)}
2dx1dx2 ... dxi . (2)
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Assuming that:

ymr (xi,∆xi) = ymr (xi) + dymr (xi) (3)

and

dymr (xi) =
n

∑

i=1

∆xi

∂ymr (xi)

∂xi

, (4)

omitting the higher derivatives one obtains:

D2 =

∫ ∫

. . .

∫

{ymr (xi) − y (xi)}
2dx1dx2 ... dxi+

2
n

∑

i=1

∆xi

∫ ∫

. . .

∫

{ymr (xi) − y (xi)}
∂ymr (xi)

∂xi

dx1dx2 ... dxi+

n
∑

i=1

∆x2
i

∫ ∫

. . .

∫ {

∂ymr (xi)

∂xi

}2

dx1dx2 ... dxi .

(5)

The first component of the above formula corresponds to the relation (1). If the
error increases or stays on the same level in the event of the rise of the parameter’s
number from r to r+1 for a given accuracy of the measurement, then the change of the
model structure is not expedient and the value r is the optimal degree of the simplified
model complexity.

2. BASIC ASPECTS OF THE PROBLEM

As mentioned earlier, the simplified model can be created either by a simplification
of the function form y(xi), too complicated for practical applications, or by a regression
for an arbitrary chosen structure ym(xi , p1, p2, . . . , pr). Moreover, the deviations ∆xi

can be |∆xi | = const for all of variables xi, or proportional to their own value xi, i.e.
|∆xi/xi | = const. Thus, four basic cases can be considered.

The first one assumes that the simplified model is created by a simplification of the
function form y(xi) without the free parameters p1, p2, . . . pr . If |∆xi | = const, then the
Eq. (5) should be used taking the absolute value of the second integral – determining
the maximum value of the error which can occur.
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If |∆xi/xi | = const, then the formula (5) should be written in the form:

D2 =

∫ ∫

. . .

∫

{ymr (xi) − y (xi)}
2

dx1dx2 ... dxi+

2
n

∑

i=1

∆xi

xi

∫ ∫

...

∫

xi {ymr (xi) − y (xi)}
∂ymr (xi)

∂xi

dx1dx2 ... dxi+

n
∑

i=1

(

∆xi

xi

)2 ∫ ∫

. . .

∫ {

xi

∂ymr (xi)

∂xi

}2

dx1dx2 ... dxi .

(6)

In case of determination of the simplified model by regression one should obtain
the optimal values of the simplified model parameters p1, p2, . . . , pr minimizing the
functional:

D2 (p1, p2, ..., pr) =

∫ ∫

. . .

∫

{ymr (xi, p1, p2, ..., pr) − y (xi)}
2

dx1dx2 ... dxi , (7)

satisfying the following conditions:

∂D2(p1, p2, ..., pr)

∂pi

= 0 =

2

∫ ∫

. . .

∫

{ymr (xi, p1, p2, ..., pr) − y (xi)}
∂ymr (xi, p1, p2, ..., pr)

∂pi

dx1dx2 ... dxi ,

(8)

for i = 1, 2, . . . , r. The system of equations allows one to obtain the parameters of the
examined simplified model. Its error can be determined on the basis of the Eq. (5) or
(6) depending on the values of deviations ∆xi.

In the event of the simplified model which satisfies the conditions:

∂ymr(xi , pi)

∂pi

=
∂ymr (xi, pi)

∂xi

ci, ci = const, (9)

the second integral in the formula (5) can be omitted. If the simplified model fulfils
the following conditions:

∂ymr(xi, pi)

∂pi

= xi

∂ymr (xi, pi)

∂xi

ci, (10)

the second integral in the formula (6) can be omitted, what significantly facilitates the
analysis. The same situation occurs in case of applying regression using the simplified
model with a polynomial form:

ymr (x, pi) = p0 + p1x + p2x2 + . . . + prx
r . (11)
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The model parameters are obtained by solving the system of equations:

x2
∫

x1

{ymr (x, pi) − y (x)} xidx = 0, i = 0, 1, 2, ..., r. (12)

The second component of the formula (5) has the form:

2∆x

x2
∫

x1

{ymr (x, pi) − y (x)}
(

p1 + 2p2x + ... + r prx
r−1

)

dx (13)

and for the relation (6):

2

(

∆x

x

)

x2
∫

x1

{ymr (x, pi) − y (x)}
(

p1x + 2p2x2 + ... + r prx
r
)

dx, (14)

because

∂ymr (x, pi)

∂x
= p1 + 2p2x + ... + r prx

r−1. (15)

Taking into account that the system (12) is fulfilled, both integrals are equal to zero.
An identical effect occurs for the simplified model, which is a result of multiplication
of polynomials for every variable xi.

The integrals for the measured data should be substituted by equivalent sums. The
determined simplified models can be compared with each other if all of them were
obtained for the same set of the experimental data.

3. SIMPLE EXAMPLES

At first it has been assumed that the ideal model of the relation y(x) has the form
y(x) = exp(x). The range of the input variable x was (0, 1) and its accuracy was ∆x

or ∆x/x.
The simplified model was searched using the expansion of the function exp(x) in

Taylor’s series:

ym1 (x) = 1, ym2 (x) = 1 + x, ym3 (x) = 1 + x + x2, . . . (16)

and by the application of the regression method, which allows to determine the optimal
values of the parameters pi for the assumed structures:

ym1 (x) = p0, ym2 (x) = p0 + p1x, ym3 (x) = p0 + p1x + p2x2, . . . (17)
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The results of the calculations are shown in Table 1. As shown in the case of the
simplified models, for the same complexity degree, by the expansion in Taylor’s series
the errors are much bigger as compared to those obtained by the regression method.
For ∆x ≥ 0.19 or ∆x/x ≥ 0.12 the complexity degree of the model ym2(x) created by
regression can be admitted as the optimal one.

Table 1. Forms of the simplified models and their errors for the first example.

Model ymr(x) D2(∆x) D2

(

∆x

x

)

1 0.785 0.785

1 + x 0.0913 + 0.437 |∆x | + ∆x2 0.0913 + 0.667
∣

∣

∣

∣

∣

∆x

x

∣

∣

∣

∣

∣

+ 0.333

(

∆x

x

)2

1 + x + 0.5x2 0.0063 + 0.187 |∆x | + 2.33∆x2 0.0063 + 0.153
∣

∣

∣

∣

∣

∆x

x

∣

∣

∣

∣

∣

+ 0.583

(

∆x

x

)2

exp(x) 3.195∆x2 0.718

(

∆x

x

)2

Regression method

1.718 0.242 0.242

0.873 + 1.690x 0.0038 + 2.857∆x2 0.0038 + 0.952

(

∆x

x

)2

1.013 + 0.851x + 0.839x2 0.000029 + 3.092∆x2 0.000029 + 1.52

(

∆x

x

)2

The second example concerns the function y(x) = (x+1)!. The models were created
by regression using the auxiliary Stirling formula:

(x + 1) ! = (x + 1)(x+1) exp [− (x + 1)]
√

2π (x + 1)exp

(

1

12 (x + 1)

)

. (18)

The way of expansion in Taylor’s series is here too complicated, hence its results are
not presented. Table 2 contains a set of the optimal parameters for four simplified
models:

ym1 (x) = a0, ym2 (x) = a0 + a1x, ym3 (x) = a0 + a1x + a2x2,

ym4 (x) = a0 + a1x + a2x2 + a3x3
(19)

and for the range of variable x = (0, 2).
The model errors D2 for all the models are put together in Table 3.
For the assumed accuracy the model ym4(x) is too complicated, but ym3(x) can be
accepted as optimal.
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Table 2. Optimal values of the simplified model parameters for the second example.

Model
Optimal values of parameters

a0 a1 a2 a3

ym1(x) 2.4654

ym2(x) 0.2428 2.2226

ym3(x) 1.2150 −0.6940 1.4583

ym4(x) 0.9527 0.8807 −0.5108 0.6565

Table 3. Errors D2 of the simplified models created in the second example.

Model Error D2 Error for ∆x = 0.1
and ∆x/x = 0.05

ym1(x) 3.6949 3.6949

ym2(x)
0.4002 + 9.8800∆x2

0.4002 + 13.1700(∆x/x)2
0.499
0.433

ym3(x)
0.0209 + 15.550∆x2

0.0209 + 39.530(∆x/x)2
0.176
0.120

ym4(x)
0.0008 + 18.720∆x2

0.0008 + 54.160(∆x/x)2
0.188
0.136

4. CONCLUSIONS

The presented examples contain simple models which are functions of one variable,
but nevertheless prove that the optimal complexity degree of the simplified model can
be determined for a known accuracy of input variables. Its determination is important
on account of the fact that the measurements are always linked with disturbances and
usually – despite of the application of different regularization methods [4–8] – the
accuracy of less important terms decreases. Hence, it is worth determining the errors
which are introduced by any of the model terms. The terms characterized by low
accuracy must be rejected from the model structure. The results of analysis depend on
the manner of the determination of accuracy of input variables and how their accuracy
is determined by a constant absolute or relative error or otherwise. The comparison of
models with different structures and parameters is purposeful when all of them were
determined for the same range of input variables. The kind of the simplification method
has substantial influence on the analysis results and choice of the optimal complexity
degree of the simplified model.
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