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MEASUREMENT UNCERTAINTY CONTRIBUTION TO THE MLP NEURAL 
NETWORK LEARNING ALGORITHM APPLIED TO AERODYNAMIC EXTERNAL 

BALANCE CALIBRATION CURVE FITTING 
 
 

The aim of this study is to fit a calibration curve to a multivariate measurement system considering 
uncertainty in load measurements. The experimental data are generated from the calibration of the aerodynamic 
external balance of the subsonic wind tunnel n.º 2, at the Brazilian Institute of Aeronautics and Space. To fit the 
calibration curve, Multilayer Perceptron Artificial Neural Networks are submitted to the learning process. 
Studies employing several different architectures were carried out in order to improve the MLP convergence. 
The uncertainty in measurements is taken into consideration, through the modification of the learning algorithm, 
which in its classical approach, considers the data points free from error sources. The results of both 
methodologies, learning algorithm endowed with and without uncertainties, are compared. The artificial neural 
network performance in predicting future calibration data is explored through the simulation process. 
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1. INTRODUCTION 
 
In modern metrology there is great concern about uncertainty. The international references, 

the ISO/IEC 17025 [1] and the ISO GUM [2] recommend the assessment of uncertainty in 
measurements. In general aspects, calibrations are performed in order to maintain the 
measurement traceability. It is worth emphasizing the important role of uncertainty in the 
traceability definition [3]: “property of the result of a measurement or the value of a standard 
whereby it can be related to stated references, usually national or international standards, 
through an unbroken chain of comparisons, all having stated uncertainties”. 

The calibration curve establishes the relationship between the input and output quantities. 
This relationship is sometimes nonlinear. In the case of the external balance at the subsonic 
wind tunnel n.º 2, TA-2, the calibration curve relates the load cell readings to the loads 
applied to the balance during calibration. The quantity of the load cell readings is the 
difference of electrical potential and the quantities of the loads are force or moments of force. 
The loading is performed by applying weights through a system of cables and pulleys [4, 5]. 

The learning process of an Artificial Neural Network (ANN) was chosen, from one of the 
several approaches available, to perform the multivariate curve fitting to the external balance 
calibration data set. The Multi Layer Perceptrons (MLPs) was the class of ANN employed. 

In the learning process of the MLP, it is unusual to consider the uncertainties in the output 
values. The subject of the present work is the development of a methodology for modifying 
the MLP learning algorithm, taking into consideration the uncertainties in the output values.  

A simulation mode is performed in order to verify the repeatability of the external balance 
calibration. 

 
2.  THE EXTERNAL BALANCE CALIBRATION 

 
A six component external balance is used to measure the loads Fi (i = 1, …, 6) acting on 

the model during the wind tunnel test at the TA-2 aerodynamic facility (Fig. 1).  



A balance calibration is performed prior to the tests [4]. The calibration is accomplished by 
applying loads to the calibration cross through a system of cables and pulleys (Fig. 2). A set 
of approximately one hundred 10 kg weights is used. 

The symbols F1, F2, F3, F4, F5, and F6 are used for the drag, side and lift forces, and the 
rolling, pitching and yawing moments, respectively. The load cells of the balance provide the 
readings Si (i = 1, …, 6). 

At the subsonic wind tunnel TA-2, a calibration performed at β = 0 (Sideslip angle) is 
called alpha calibration and beta calibration when otherwise. Seventy three and two hundred 
and nineteen loading combinations are employed for alpha and beta calibrations, respectively. 
Table 1 presents some typical loading combinations. 

Two alpha calibrations presenting the same configuration are used in this study. The first 
one is employed in the MLP learning process and the other to verify the repeatability. 

 

 
 

Fig. 1. The TA-2 external aerodynamic balance. 
 
 

 
 

Fig. 2. Loading system for the balance calibration. 
 
 



Table 1: Some typical balance calibration loadings. Unit: newton for force and newton×meter for moments. 
 

Loading number Aerodynamic 
loads 1 26 38 50 71 

F1 0 100 0 0 200 
F2 0 0 300 -300 0 
F3 -400 0 0 0 400 
F4 0 -100 0 100 0 
F5 -100 0 0 0 0 
F6 0 0 120 0 0 

 
 

3. THE MULTILAYER PERCEPTRONS ARTIFICIAL NEURAL NETWORK 
 
Artificial Neural Networks are computational intelligence techniques, which may be 

considered capable of resolving certain classes of problems, among them the approximation 
of functions, sometimes called mathematical modeling. The approximation of the function 
may be used to fit the calibration curve taking into account the quantities related to the 
calibration process. The kind of artificial network employed is the Multilayer Perceptrons 
(MLP). Neural Networks have already been used in calibration curve fittings [6]. 

A node may represent the artificial neuron, based on the biological neuron. The node has a 
single output and several inputs. Each input signal is multiplied individually by a factor called 
synaptic weight. One of the inputs is chosen as being equal to 1 (threshold). The results of this 
operation are summed, which is called the weighted sum. The weighted sum is the input value 
of the transfer function. 

Figure 3 presents the architectural graph of the artificial neural network used in this study. 
It has an input layer of source nodes, a hidden neuron layer and an output neuron layer. It is 
referred to as multilayer perceptrons and is said to be fully connected, as every node in each 
layer of the network is connected to every other node in the adjacent forward layer. 

        

 

 

        
 

Fig. 3. MLP neural network architectural graph. 
 
There are two modes of MLP operation, the learning process and the simulation process. In 

the former, the desired input/output vector pairs are supplied to the source/output nodes of the 
MLP. Adjustments are applied to the synaptic weights W through the iterative learning 
process. The suitable values of the synaptic weights are those that decrease the index 
performance, known as Performance Function (PF). In the latter form of network operation, 
the input vectors obtained during testing are supplied to the source layer of the MLP and from 
the weights W fixed during the learning phase one obtains the values of the corresponding 
output vectors [7]. 

The conception of the MLP involves the following aspects: 
− Number of layers. In this work, it is equal to three; 
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− Number of neurons in each layer. The hidden layers may have any number of neurons. The 
number of output variables limits the number of neurons of the output layer. In this study 
several three-layered MLP are employed, where the number of neurons of the hidden layer 
and the number of the nodes of the source layer change; 
− Transfer Function (TF). It is based on the biological neuron transfer function: the sigmoid 
function. Equation (1) expresses the TF employed in this study 
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− Learning algorithm. The learning algorithm used is the Levemberg-Maquardt method [8]. 
The algorithm was modified to account for the uncertainties in the MLP output; 
− Synaptic weights initialization. This parameter determines the convergence and the period 
of convergence of the neural network. For initialization, the value of the synaptic weights 
chosen is 0.0001; 
− Learning performance or Performance Function (PF). The measure of learning 
performance is the quadratic error summation, Σe2, which consists of the squared difference 
between the actual response of the neural network and the desired response, summed over the 
entire data set. There are several other PFs that can be used based on the quadratic error 
summation, such as the Mean Square Error (MSE) [7]: 
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l being the number of elements of entire data set (l = 73 × 6 = 438); 
− Learning rate. A suitable choice of this rate avoids the trapping of the artificial neural 
network in the local minimum. The algorithm tries several rates for the MLP convergence. 
The step chosen for the learning rate increment is equal to 50; 
− Iterative number. It leads to an improvement of the PF. Each iteration corresponds to the 
presentation of the complete set of input/output vectors pairs to the artificial neural network. 
In this study, this number is 2000. 

In mathematical terms, the neurons of the MLP for each output variable Fi are described by 
the following equation: 
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n = 1, 2,…, ... N is the hidden layer neuron index, 
m = 1, 2,…, ... M is the source layer node index, 
ϕi - transfer function of the neurons of the output layer, 
W2in - synaptic weights of the neurons of the output layer, 
ϕn - transfer function of the neurons of the hidden layer, 
W1in - synaptic weights of the neurons of the hidden layer, 
Sm are the input signals. 

The MLP synaptic weights are set through the Levemberg-Maquardt learning process. This 
process consists of a regression based on least squares, with a linear approach around the error 
points at the nth iteration [6]. The synaptic weights are set through the matrix equation: 
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n - 1, 2,… iteration index, 
wr - column vector of synaptic weights and thresholds, 
er  - column vector of output errors (difference between the desired and MLP output values); 
J
r

 - Jacobean matrix, expressed by Eq. (5). 
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Following the traceability definition and the metrological recommendations [1, 2], data 

uncertainties were considered in the MLP learning algorithm.  
The steps for modifying the learning algorithm for best metrology practice involve first-

order Taylor series approximation of the error vector around the nth iteration: 
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Minimizing the quadratic error summation considering the uncertainties (covariance 

matrix) is equivalent to minimizing the expression [8, 9]: 
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2
Fu  - load covariance matrix. 

 In this study, just the load variances are considered, i. e., 2
Fu  is a diagonal load covariance 

matrix. 
Substituting Eq. (6) into Eq. (7) yields: 
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Differentiating Eq. (8) with respect to )()1( nwnww
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setting the results equal to the null matrix, gives rise to: 
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Rearranging Eq. (9) and inserting the learning rate λ to avoid the singularity of the inverse 

matrix, one finds the MLP learning equation endowed with uncertainties: 
 

 ( ) ( ) ( )[ ] ( ) ( )neunJInJunJnwnw F
T

F
T rrrrrrr 12112 )()()(1 −−− +−=+ λ . (10) 

 
 
 
 
 



4. METHODOLOGY 
 

The methodology of curve fitting through the three-layered MLP consists of submitting it 
to the learning process for several numbers of neurons in the hidden layer. The learning 
Performance Functions values were compared either for the entire data set or for the 
individual load values. Both cases, learning endowed with and without load uncertainties are 
considered as well.  

Besides the first calibration employed in MLP learning, a second one, performed at the 
same laboratorial configuration, was used to test the short-term calibration repeatability. For 
the second calibration, the MLP operated in the simulation mode. The input vectors, i.e., the 
load cell readings, are presented to the MLP source layer. Maintaining the synaptic weights, 
the output vector values are computed in order to estimate the PFs, which correspond to the 
quadratic error summation. The PFs were estimated when considering or not considering the 
load uncertainties. 

 
5. RESULTS AND DISCUSSIONS 

 
Figure 4 presents the uncertainty profile employed in this study, which consists of the 

uncertainties in the estimation of the friction forces originating between cables and pulleys 
during the external balance calibration. The average level of the uncertainties is shown as a 
dotted line. 
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Fig. 4. Load uncertainties and average level. Unit: newton for force and newton×meter for moments. 

 
Figure 5 shows the PF values versus the number of neurons in the hidden layer for the 73 

loading configurations. When the number of neurons in the hidden layer increases, there is 
predominantly a decrease in the PF value. The small graph inserted in the figure emphasizes 
whether the PF considering the load uncertainties is greater (slower) or less in value (faster) 
than the PF when not considering them. 
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Fig. 5. MLP Performance Function for the learning mode. 

 
The PFs as a function of the number of neurons in the hidden layer, for each load 

component, are shown in Figs. 6 to 11. The learning algorithm is endowed or not with load 
uncertainties. These figures highlight the differences between the MLP learning process with 
and without uncertainties. It can be seen that the quadratic error summation for the loads F4 
and F6 are predominantly lower for the case without load uncertainties (Figs. 9 and 11). As 
one can note, this result is in accordance with Fig. 4, which indicates uncertainties associated 
to loads F4 and F6 below the average level. For the other load components either the PFs are 
higher in the case of considering the uncertainties (Figs. 6, 8, and 10) or the curves intersect 
each other (Fig. 7). Once again, these results are in accordance with Fig. 4, which presents 
load uncertainties greater than or close to the average level. 
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Fig. 6. Learning Mode Performance Functions for F1. 
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Fig. 7. Learning Mode Performance Functions for F2. 
 

-1

0

1

2

3

4

5

6

7
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of neurons in the hidden layer

Su
m

 (e
²)

Without load uncertainties
With load uncertainties

 

Fig. 8. Learning Mode Performance Functions for F3. 
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Fig. 9. Learning Mode Performance Functions for F4. 
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Figure 10. Learning Mode Performance Functions for F5. 
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Fig. 11. Learning Mode Performance Functions for F6. 
 
Figure 12 shows the PFs versus the number of neurons in the hidden layer, for the MLP 

submitted to the simulation process, with and without considering the load uncertainties. The 
data from the second calibration were employed. The learning process was performed through 
the first calibration data, according to Fig. 5. In the PF curves presented, the short-term 
repeatability of the external balance calibration for the entire data set can be analysed.  

One could seek the best MLP architecture to estimate the calibration curve, through the 
one which promotes the lowest PF value to represent the balance calibration repeatability. 
Nevertheless, this choice is not so evident, once there is not a defined minimum. Instead, the 
minimum value oscillates in a region between 6 and 12 neurons in the hidden layer. After this 
period, a slight tendency for the PF to increase occurs (Fig. 12). 
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Fig. 12. Performance Functions for the second calibration. 
 
One can use the Mean Square Error (MSE) in order to better visualize this choice. If all the 

errors of the entire data set had been equal, the MSE would represent each one of these errors 
[6].  

Choosing the MLP architecture that represents the minimum MSE in the learning and 
simulation process simultaneously could be achieved by the normalization of the MSE per 
maximum MSE in each process and comparing them.  

Figure 13 shows the normalized MSE for the learning and simulation process with and 
without load uncertainty. If this is the case, one would choose the architectures with 9 to 11 
neurons in the hidden layer because the MSE values in the learning and simulation are close. 
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Fig. 13. MSE for the first (learning process) calibration and second (simulation process) calibration with and 

without load uncertainty. 
 
 

6. CONCLUSIONS 
 
This study presents a methodology for multivariate curve fitting and for the analysis and 

maintenance of traceability, related to the data derived from a calibration process. 



The MLP Artificial Neural Network was employed to interpolate the calibration data set. 
Uncertainties in the output quantities were considered in the learning algorithm of the MLP. 
An analysis of the quadratic error summation convergence due to uncertainties contributions 
was presented. 

With other approaches of uncertainty assessment and calibration there is a necessity of 
establishing the mathematical relationship between the input and output quantities. However, 
the MLP has the advantage of solving the relationship between the involved quantities, since 
the mathematical modeling is the one imposed by the MLP architecture. The drawback is that 
it is necessary to work on all the aspects cited in section 3. 

Calibration curve fitting employing MLP, without considering measurement uncertainties 
may over- or underestimate the Performance Function, as discussed in section 5.  

It is possible to choose the PF accuracy for the calibration curve fitting, employing MLP. 
The value of the quadratic error summation achieved can be negligible and therefore it is 
suitable for even the most rigorous measurement accuracy requirements. Obviously, this 
situation occurs at the expense of computational time, since the processing is iterative and the 
number of parameters in each layer is proportional to the number of neurons.  

 One is able to choose a MLP architecture that minimizes both learning and simulation 
process simultaneously, through the normalized MSE, if required. However, this approach is 
just an option. The Performance Function may be used to analyse the repeatability of 
successive calibrations when the MLP is employed in the simulation mode. 

The possibility of taking into account the measurement uncertainties, without MLP 
convergence and computational drawbacks, has been demonstrated. The results agree with the 
intuition that curve fitting for quantities associated with low uncertainties converges faster. 
Considering uncertainties is in accordance with metrology best practice, recommended by 
international standardization [1, 2, 3]. 

Studies to improve the assessment of the uncertainty in the measured quantities must be 
carried out. There are several error sources that act during the external balance calibration. 
Some of them are recognizable and quantifiable, and others may remain unknown. This study 
considers just the uncertainty in the estimation of the friction forces between cables and 
pulleys. Contributions from the measurement chain such as data filtering and the process of 
alignment of the cables in the calibration process are still to be investigated. One should also 
consider the uncertainties declared in the calibration certificates of the weights applied to the 
loading system and of the load cells. Besides, just the load variances are considered in the 
covariance matrix employed in the MLP learning algorithm. The covariances between the 
aerodynamic loads are still under evaluation. Application of other MLP architectures, with 
number of layers greater than three, is the next step to be analysed. 
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