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THE TRANSPORTATION DISTANCE FOR FUZZY DESCRIPTIONS OF 
MEASUREMENTS 

 
 

Fuzzy nominal scales were introduced in order to propose a formalism to the representation of empirical 
quantities by fuzzy subsets of words. This scale proposes a similarity relation and an associated bounded 
distance that can be used to perform signal processing on fuzzy subsets of words. Due to the limits of this last 
distance, we studied distances associated to this formalism and proposed a new distance operator named 
transportation distance. This paper presents the results of these studies. 
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1.  INTRODUCTION 
 

The introduction of the fuzzy subset theory in the measurement field takes its origin in 
1971 in Zadeh’s paper [1] that exposes a mechanism of description of a quantity by a fuzzy 
subset of symbols. Since this paper, the definition of the description process was mainly 
based on good practices. Most of description processes had useful properties but it was 
sometimes difficult to justify them. Recently, the link between the quantities and their fuzzy 
representation was defined in the scale formalism [2]. This new scale is named the fuzzy 
nominal scale [3, 4]. 

This approach gives the set of relations and operators that can be used to define equations 
on symbols such that these equations have a meaning on the set of quantity values. When a 
fuzzy description is a fuzzy nominal scale, a fuzzy equivalence relation on quantity values is 
linked to a fuzzy equivalence relation on their representation. This last relation also named 
similarity relation is used to define a distance between the fuzzy subset of symbols that 
represent the quantity values. This distance had been used to perform signal processing [5], 
but is useless to compare symbols that are not related by the similarity relation. 

The purpose of this paper is to propose a distance on fuzzy representations linked to a 
metric on the set of quantity values. With this new distance, a fuzzy nominal scale is 
enhanced and the set of authorized operators has now this distance as member. 
 
 

2.  THE FUZZY SYMBOLISMS 
 
The link between a physical state and its linguistic representation is characterized by a 

symbolism defined by the triplet <E, S, R> where E is the set of physical states, S is the 
lexical set used to represent measurement results and R is a relation on E×S. Two mappings 
can be extracted from this relation: The description mapping denoted D associates a subset of 
S to any item of E, and the meaning mapping denoted M associates a subset of E to any item 
of S. These two mappings are linked with the following equation. 

 
 e∀ E∈ s∀ S∈ e, , M s( )∈ s D e( )∈⇔ . (1) 



The R relation can be a fuzzy relation. Then, the translation of a physical state into its 
linguistic representation is called a fuzzy linguistic description mapping or simply a fuzzy 
description mapping. It transforms an object e of the set of physical states E into a fuzzy 
subset of linguistic terms called the fuzzy description of x. The dual mapping, called the fuzzy 
meaning mapping, associates a fuzzy subset of E to each term s of the lexical Set S. This 
fuzzy subset is the fuzzy meaning of s. In the paper the fuzzy subsets of linguistic terms also 
named lexical fuzzy subsets are denoted LFS. This two mappings are also linked: 
 

 e s,( )∀ E S×∈ µM s( ) e( ) µD e( ) s( )=, . (2) 
 

In [7] it is defined that <E, S, R> is a φ-symbolism if the set of the meanings of the 
elements of S is a φ-partition of E as defined in [8] and if each meaning is normalized. This 
paper restricts its investigation to id-symbolisms based on id-partition i.e. on Ruspini 
partition. The set of all possible LFS obtained by a fuzzy description based on id-symbolism 
is denoted Fid(S). Any LFS respects then the condition: 
 

 
A∀ Fid S( )∈ µA s( )

s S∈
∑, 1=

. (3) 
 

A fuzzy equivalence relation on the physical states can be associated to any id-symbolism. 
 

 
x y,( )∀ E2∈ µ, ~ x y,( ) m in µM s( ) x( ) µM s( ) y( ),( )

s S∈
∑=

. (4) 
 

From this fuzzy equivalence relation and from the relation R, the following relation can be 
simply defined. 

 
A B,( )∀ Fid S( )2∈ µ, ~ A B,( ) min µA s( ) µB s( ),( )

s S∈
∑=

. (5) 
 

The symbolism <E, S, R> is then considered as a fuzzy nominal scale. 
 
 

3.  CHOICE OF A DISTANCE OPERATOR 
 
The relation used in the id-symbolism can define the distance between LFSs [5]. 

 

 d~ A B,( ) 1 - µ~ A B,( )= . (6) 
 

This distance is discriminant for LFSs that are at least partially equivalent but is equal to 1 
when 2 LFS have an empty intersection. This result is consistent with the absence of distance 
on the lexical set. This means that the definition of a metric on the set Fid(S) needs the 
definition of a metric on the set S. Let dS be a distance defined on S. 
 

3.1. Required properties 
 

The fuzzy subset theory proposes a large set of distance operators and the best way to 
select a distance operator is to list the properties that must be verified. 



- The first property is the singleton coincidence: If two LFSs are singleton {s1} and {s2} 
then the distance between them is equal to the distance between symbols s1 and s2. This 
property supposes that the distance dS on S exists. 

- The continuity property is verified when the distance is a continuous mapping from 
Fid(S)×Fid(S) to the set of positive numbers. 

- The precision property simply imposes that the distance between two LFSs must be a 
positive real number, and not a fuzzy subset of positive real numbers. 

- The consistency property is usually verified by distances on crisp subsets: If A, B, C, E are 
four subsets of a metric space, d is the distance on this space, and dg is a distance that 
generalizes d on subsets, it verifies: 

 

 

sup
u A v B∈,∈

d u v,( ) inf
x C y E∈,∈

d x y,( )≤

dg A B,( ) dg C E,( )≤⇒ . (7) 
 

 
 

Fig. 1. Consistency property. 
 
The extension of a distance defined in a finite space to a distance defined on the set of the 

fuzzy subsets of this space was widely studied but, as shown below, no existing distance can 
be applied to Fid(S). 

Distances on fuzzy subsets can be classified into the following categories. 
- The distances that generalise an existing distance.  
- The distances defined from a similarity measure. 
- The distances defined with subset operators. 
- The distances computed from a symbolic approach. 

In our approach, a distance dS is supposed to be defined on S. Then only the first category 
is investigated. 

The generalisation of a distance dS defined on a finite set S, to a distance dF(S) defined on 
the set of fuzzy subsets of S is a recurrent subject of study. In [9] Bloch proposes four types of 
generalisation. 

 

3.2. The geometrical approach 
 
In this approach, fuzzy subsets in a n-dimensional space are considered as crisp subsets in 

a (n+1)-dimensional space. This means that the distance between membership degrees has the 
same semantic than distance in the n- dimensional space. Such hypothesis cannot be justified 
in our problem and this approach is not kept. 

 
3.3. The fuzzification approach 

 
In another approach a distance DS between crisp subsets is defined from the distance dS. 

Then the distance DS is fuzzyfied. In  three fuzzifications of the Hausdorff distance are 
proposed. 



 

H1
FId S( ) F G,( ) HS Fα Gα,( ) αd

0

1

∫=

, (8) 
 

 
H∞

FId S( ) F G,( ) sup
α 0≥

HS Fα Gα,( )=
, (9) 

 

 H*
FId S( ) F G,( ) HS F1.0 G1.0,( )= , (10) 

 
where Fα and Gα are the alpha-cuts of F and G, and HS is the Hausdorff distance: 
 

 
HS A B,( ) ma x maxa A∈

min
b B∈

d S a b,( ) maxb B∈
min
a A∈

dS a b,( ),( )=
. (11) 

 
( )

∞
SFId

H and ( )
*

SFId
H  do not verify the continuity property, but ( )

1
SFId

H  does. It also verifies the 
singleton coincidence, but not the consistency property. 
 

3.4. The weighting approach 
 
The distance dS can be generalized with a weighting of membership degrees. 

 

 
dT F G,( ) T µF s1( ) µG s2( ),( )dS s1 s2,( )

s2 S∈
∑

s1 S∈
∑=

, (12) 
 
where T is a continuous triangular norm. 

Such operator does not respect the separation axiom that imposes: 
 

 dT F G,( ) 0 F⇔ G= = , (13) 
 
then it cannot be considered as a distance. 
 

3.5. Morphological approach 
 
This last approach is based on morphological operators. For example the Hausdorff 

distance can be expressed with such operators. The principle is to generalize these operators 
to fuzzy morphological operators. But most of these generalizations produce fuzzy distances 
that do not respect the precision property. 
 

3.6. A new approach 
 
So a new distance that respects the four properties has been created. This distance is named 

the transportation distance dtp. Its calculation is equivalent to the solution of a mass 
transportation problem [11]. It is similar to the Wasserstein distance used in probability 
theory, and can also be considered as a fuzzy version of the Levenshtein distance used to 
compare strings [13]. 
 
 



4. THE TRANSPORTATION DISTANCE 
 
The transportation distance between two LFSs is based on the cost calculation of a set of 

transformations needed to transform the first LSF to the other. First a family of transformation 
mappings is defined: 

Let xss ji
T ,,  be a mapping on a set Fid(S) such that: 

 

 
G Tsi sj x, , F( )

µG si( ) µF si( ) x–=

µG sj( ) µF sj( ) x+=
⇔=

. (14) 
 

 
 

Fig. 2. The mapping 2.0,, 21 ssT  with S = {s1, s2, s3, s4}. 

 
We demonstrate that any element of Fid(S) can be transformed into any other element of 

Fid(S) with the use of a sequence of such transformation mappings. 
Let the following sets: 

SF G> s S∈ µF s( ) µG s( )>,{ }= , 
 

SF G= s S∈ µF s( ) µG s( )=,{ }= . 
 
Proposition 1: Let S be a finite set. Let F and G be 2 elements of the set Fid(S). Let ∆s = 

µF(s) - µG(s). The following equality is verified: 
 

 
∆s

s SF G>∈
∑ ∆s

s SG F>∈
∑–=

. (15) 
 

Then the definition of the sequence of transformation mappings is equivalent to the well 
known linear programming problem named the transportation problem [11]. The problem is 
to bring a product from a set of n1 sources to a set of n2 destinations. Each source i gives a 
quantity xi of product, and each destination receives a quantity xj’ of product. The total given 
quantity must be equal to the total received quantity: 
 

 
xi

i 1=

n1

∑ xj′
j 1=

n2

∑–=
. (16) 

 
A solution is to associate to each displacement from a source i to a destination j a quantity 

xij of transported product and a displacement unity cost cij. The aim is to find a solution that 
minimises the total cost: 



 
xijcij

i j,
∑

. (17) 
 

Considering the membership degrees as the transported product, the set SF>G as the set of 
sources and the set SF<G as the set of destinations, a distance can be computed as the total cost 
of the optimal solution for the transportation of membership degrees. 

The transportation distance dtp is defined on Fid(S) from distance dS on the lexical set S. 
The distance dtp is the sum of the costs of each transformation mapping. And the cost of a 
transformation mapping 

ijji xssT ,,  is equal to: xijdS(si, sj). 
It is now shown that the transportation distance is a distance, and it verifies the 4 

constraints presented before.  
For any F, G, H ∈ FId(S), dtp must verify: 

 

 d tp F G,( ) 0= F⇔ G= ,  (18) 
 

 d tp F G,( ) d tp G F,( )= ,  (19) 
 

 d tp F G,( ) d tp G H,( )+ d tp F H,( )≥ .  (20) 
 
- The relation F = G is equivalent to SF>G = SF<G = ∅ that is equivalent to dtp(F, G) = 0. 
- The symmetry of dtp is deduced from the symmetry of the transportation problem. 
-  Finally, dtp(F, H)  is by definition the distance corresponding to the optimal sequence of 

transformations xss ji
T ,,  that changes F into H. Then adding a constraint in order to include 

G in the set of transformation steps will increase the distance. 
- Calculating the distance between singletons {li} and {lj} using the transportation problem 

is equivalent to finding a cheaper solution to bring a unity quantity of product from source 
i to destination j. The solution is made of only one transformation mapping 1,, ji ssT . The cost 
of this solution is cij that is equal to the distance dS(si, sj) then the singleton coincidence is 
verified. 

- The precision and the continuity properties are deduced from the definition of the distance 
- The consistency property of dtp is demonstrated below: 

Let F, G, H, I four elements of FId(S) and (s1, s2, s3, s4)∈S4 such that: 
 

 
d FG d HI≤ 

, (21) 
where: 

 

dHI inf
s3 s4,( ) supp H( ) supp I( )×∈

dS s3 s4,( )= ,

dFG sup
s1 s2,( ) supp F( ) supp G( )×∈

dS s1 s2,( )= .
 (22) 

 
and supp(A) is the support of A i.e. the set of lexical terms s such that µA(s) ≠ 0. 

It must be shown that 
 

 d tp F G,( ) d tp H I,( )≤ . (23) 
 



If H ∩ I ≠ ∅, then 0=HId and 0=FGd . F and G are the same singleton and dtp(F, G) = 0. 
Equation (23) is trivially verified. 

If H ∩ I = ∅, the brought quantity associated to the calculation of dtp(H, I)  is equal to 1 
and dtp(H, I) ≥ HId because the transportation distance is then a weighted average of distances 

that are greater or equal to HId . With the same reasoning, dtp(F, G) ≤ FGd . Then, Eq. (21) 

induces dtp(F, G) ≤ dtp(H, I). 
 
 

5.  APPLICATION EXAMPLE 
 
In this section, the transportation distance is applied on the hand posture recognition. More 

details on the application can be found in [12]. 
 

 
Fig. 3. The 18 sensors of the Cyberglove®. 

 
The hand posture is acquired with the 18 angle sensors of a CyberGlove® (Fig. 3). The 

finger flexion (except for the thumb) is acquired with two angle sensors: MCP (metacarpal-
phalanx angle) and IP (inter phalanx angle). The linguistic description of a finger uses the set 
Sflexion = {Folded, Claw, Round, Square, Straight} see Fig. 4. 

 

 
 

Fig. 4. Words used to describe the finger flexion. 
 



The dataglove gives a numeric representation of the finger flexion as a couple (mcp, ip) 
∈ ℜ2. The definition of the fuzzy linguistic description is performed through the definition of 
the fuzzy meaning of each lexical term. These meanings are fuzzy subsets in ℜ2 as shown in 
example in Fig. 5. 
 

 
Fig. 5. Meanings of the items of Sflexion. 

 
The illustration of this new distance is presented with the example of a finger flexion. 

Considering 2 numeric values of finger flexion f1 = (0.5, 0.5) and f2 = (1.2, 1.0) their fuzzy 
descriptions are shown in Fig. 6. 
 

 
 

Fig. 6. Descriptions of f1 and f2. 
 
The distance 

flexionSd  is arbitrarily chosen as shown in Table 1. It represents the human 
knowledge about the description of a finger flexion. 

 
Table 1. Distance 

flexionSd  defined on Sflexion. 
 

dSflex ion  
Folded Claw Round Square Straight

Folded 0 1 2 3 4 
Claw 1 0 1 2 3 

Round 2 1 0 1 2 
Square 3 2 1 0 1 
Straight 4 3 2 1 0 

 

 
 

Fig. 7. Graph that represents 
flexionSd . 



The distances to the two finger flexions f1 and f2 are calculated for any other finger posture 
(Figs. 8 and 9). In both figures, five plates correspond to the distance between each term and 
f1 or f2. The value on each plate is directly connected to the distance 

flexionSd . 
 

 
 

Fig. 8. dtp(D(f1), D(g)) with f1 = (0.5, 0.5). 
 
In Fig. 9 the values of the plates corresponding to the terms Square and Round are identical. 
This means that: 
  

 
d D f2( ) Square{ },( ) d D f2( ) Round{ },( )=

, (24) 
 
even if ( ) ( ) ( )( )SquareRound fDfD 22

µµ ≥  as shown in Fig. 6. This result is consistent because 
the transportation distance takes all the terms into account. In this case f2 is a little bit 
Straight: ( ) ( ) 25.0

2
=StraightfDµ .  

 

 
 

Fig. 9. dtp(D(f2), D(g)) with f2 = (1.2, 1.0). 
 



6.  DISCUSSION 
 
Through a fuzzy nominal scale, a link is established between a set of measurement results 

and a set of fuzzy subsets of linguistic terms. The distance dtp proposed in this paper 
generalizes the distance dS defined on a small set of lexical terms such that each term 
represents a fuzzy subset of measurement results. Then, the distance dtp depends on the 
definition of the distance dS. In the application example, dS is arbitrarily chosen. Another 
choice can be represented by the following graph. 

 

 
Fig. 10. Another definition for dS. 

 
Such arbitrary choice can be considered as a critical point of this approach. A more 

objective approach can be based on the scale definition as presented in [3] but the result looks 
like an arbitrary choice. For example, the distance given in Fig. 10 can be the result of such an 
objective approach. Actually a fuzzy nominal scale is defined by its φ-symbolism that is itself 
an arbitrary choice even if it respects strict constraints. The definition of such scale, and such 
distance is not simply driven by the measurement process, but also by the goal of the fusion 
system that includes the measurement process. In this paper the distance was defined for 
decision systems based on a set of typical known gestures. In other cases the choice of the 
distance can be based on statistical data or on the knowledge of physical mechanisms. From a 
more general point of view, the discussion can be concluded with the proposal that the 
distance concept is not a part of the empirical world, but a part of its representation. 
 
 

7.  CONCLUSION 
 
The scientific process that formalizes the lexical fuzzy subset based descriptions of 

quantities started with the introduction of fuzzy nominal scales as a bridge between the 
description process proposed by L. Zadeh, and the scale formalism as presented by L. 
Finkelstein. The goal of such a process is to create a signal processing formalism where the 
elementary entities are lexical fuzzy subset based representations of quantities.  

With the transportation distance, this paper gives a new tool for processing lexical fuzzy 
subsets issued from a measurement process. With its four properties: singleton coincidence, 
continuity, precision and constancy, the transportation distance is a good candidate to perform 
signal processing on this particular kind of representation issued from a fuzzy description of 
measurement. In this paper the distance between lexical terms was issued from human 
knowledge, but it will be possible to extract it from a metric on physical states and from the 
fuzzy nominal scale. Then the scale will be enhanced in order to bring a metric from the set of 
physical states to the set of lexical fuzzy subsets. Into the context of a LFS based signal 



processing, it can now be considered that this one includes a fuzzy equivalence relation, also 
called similarity, and a distance. A scale based on the association of two similarity was called 
fuzzy nominal scale, or it can be called a topological scale. We propose that an extension of 
this scale including the association of two distances be called a metric scale. 

The study presented in this paper is a first step in the study of operators that define scales 
based on φ-symbolism. This study needs to be extended to other φ-symbolisms and, if 
applicable, to all of them. But before, the criteria that drive the choice of a φ-symbolism need 
to be objectively defined. The next steps of this research are on one side, defining new signal 
processing processes based on this metric scale, i.e. that use only the similarity relation and 
the distance to perform signal processing. On the other side, finding new operators to improve 
the LFS based signal processing formalism. 
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