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The author has devised a test for evaluating the accuracy of calculation algorithms and used it to establish 
the accuracy of the software of fourteen CMMs offered by world top manufacturers. Using a minimum 
number of measuring points, the author calculated various geometrical elements with arbitrary shape 
deviations and the relationships between them, and compared the obtained results with the reference results. 
The input data were entered from the keyboard to the computer working with a CMM. Therefore the error of 
the final calculation result was introduced only by the software and the computer, and did not include the 
errors of the CMM. The computer and the software were treated as a “black box”. The same test set was used 
for all software.  
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1. INTRODUCTION 
 

From time to time, every Coordinate Measuring Machine (CMM) should be calibrated 
(with complex or analytical methods) to establish its accuracy. During calibration we 
usually assume that the next element in the measuring system, the computer or, strictly 
speaking, the calculating algorithm, is not a source of additional errors. It seems, however, 
that it is an unfounded assumption and that the so-called “software quality” should be 
established before the calibration of the CMM is performed. The standard DIN 32880 [13] 
unequivocally defines the way of determining basic elements and the relationship between 
them. However, almost all CMM manufacturers use different software for control and for 
processing of input data. The author aims to show that with the CMM software used at 
present there is a considerable chance to obtain results with relatively large errors, 
especially when the number of measuring points is low. The author devised his own test 
for CMM software. The test allows every user to test his software and draw his own 
conclusions. The author used his test to examine software in industrial conditions. The 
measurement systems were not the author’s property. Therefore it was necessary to work 
out a method which would require neither purchasing the software to be tested, nor the 
installation of sophisticated reference software. The author financed the research himself. 
In the test the substitute elements were calculated using a small number of measuring 
points because of limited access to the tested software. Besides, in this case the differences 
in the results are visible. To achieve a more detailed picture of software accuracy, the same 
set was tested for more points (up to 32 points). The results obtained in this part of the 
experiment, however, are beyond the scope of the presented paper. The tested software 
came from firms which have been operating on the Polish market since 1997 (Table 1). 

 
Table 1. List of the tested CMM software (in alphabetical order). 

CMMs software Comment 
Calypso * 
Geopak-Cosmos * 
Metromeasure * 



Metrosoft * 
PC-DMIS ** 
Prelude Inspection * 
Quindos  *For DOS 
Quindos **For Windows 
Softios *For DOS 
Softios **For Windows 
Tutor * 
Umess * 
Zettmes * 
Zettmes **New version 

*CMM software tested to 2002 
**CMM software tested in 2005 

 
 

2. DESCRIPTION OF THE TEST 
 

In order to determine the value of errors generated by the measuring software, the 
author proposes a method of calibrating the measuring software with a 3D geometrical 
model standard. This is a virtual standard, which takes the form of a set of arbitrary points. 
Therefore the errors which are determined depend only on the type of computer and on the 
calculation algorithms. The measurement of a circle, plane and straight line is simulated 
with the minimum number of measuring points. Whether the small number of points would 
affect the accuracy of the real measurement is of secondary importance here. The obtained 
results are compared with the reference results, which were calculated with the Least Mean 
Square (LMS) method in accordance with the standard DIN 32880-1. In spite of the well-
known deficiencies of this method, it is the reference point of the whole test. All 
differences between the reference results and the obtained results are treated as calculation 
errors. In this way, the author receives a true image of the accuracy of the software tested. 
To avoid prejudice, the names of the manufacturers have been encoded. The letters A to O 
were used instead of company names. 

The test has been conducted on the basis of elements of the ISO 10360-6 standard. The 
only difference is that the input data are entered in the computer through the keyboard. 
This allows the operator to introduce his own reference data instead of using commercial 
reference software. Moreover, since the CMM is not working while the test is conducted, it 
does not influence the measurement results. (Fig. 1).  

The virtual 3D geometrical model comprises the most common geometrical elements 
with arbitrary shape deviations. This allows creating the measuring problem in an arbitrary 
way. The operator chooses the number and the distribution of measuring points. The points 
are not collected in a real measurement, but exist in virtual form. Only the computer and 
the software, therefore, introduce an error to the final measurement result. 

The proposed approach is extremely cheap and flexible. It allows testing various types 
of CMM software. We may determine how a given piece of software calculates a straight 
line, a plane, a circle, a sphere, a cylinder, and how it calculates the relationships between 
these elements. The test involves typical measurement tasks without the so-called 
“exceptional cases”. If we calculate a virtual geometrical element and compare the result 
with the result given by the reference software, we get reliable information about the real 
accuracy level of the software we use (Fig. 2). 

Reference calculations were executed on the PC computer (Pentium III processor, 
Windows XP). Technical parameters of the tested computer and reference computer were 
comparable. The test has been carried out for 14 different cases of software. To eliminate 
mistakes, all tests were performed twice. In doubtful cases, the whole starting procedure 
was repeated, including the resetting of the computer. 
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Fig. 1. The block scheme of the Coordinate Measuring Technique. 
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Fig. 2. The block scheme of the comparison algorithm. 

 
The experiment was conducted in two phases. In the first phase we tested the 

conformity of defining plane figures and solids in various pieces of software with the 
criterion of the minimum number of measuring points. In the second phase we attempted to 
determine the accuracy of particular algorithms. 

Phase 1: The surface of almost all measured objects can be described by typical 
geometrical elements: a point, straight line, plane, circle, sphere, cylinder and cone. To 
determine all the above elements (which are parts of a measured object) we use the 
coordinates of points which belong to these elements. The coordinates of the points are 
either calculated or measured. For each element the smallest number of necessary points is 
defined. This is different, depending on whether the element is determined mathematically 
(fewer points are necessary) or whether it is calculated on the basis of measurements (more 
points are needed). Some tested software offers the option of using the mathematical 
minimum number of points for calculations. It seems pointless, however, since many more 
points are needed to reliably recreate a given shape [11]. Our test has shown that only one 
calculating algorithm fulfils the requirement of the minimum measurement number of 



points for all elements. On the other hand, as many as three algorithms do not fulfil this 
requirement for all six geometrical elements. The algorithms use the minimal mathematical 
number of points instead. 

Phase 2: The author has created a 3D geometrical model to be used in the tests. For the 
purpose of the test the author has selected measurement tasks which are most common in 
mechanical engineering. The simulated shape deviations are in the 6÷8 accuracy class. 
The test includes the determination of the following equations and relationships (Fig. 3): 
1. equation of  circle I ( no shape deviations), 
2. equation of circle II (three-lobing), 
3. coaxiality of circles I and II (Fig. 6a), 
4. equation of circle III ( ovality), 
5. equation of circle IV ( local flatness ), 
6. distance between circles III and IV (Fig. 6b), 
7. distance between planes I and II ( shape deviation of plane I- warp; of plane II - 

concavity) (Fig. 6c), 
8. angle between planes I and III ( shape deviation of plane I - warp; ideal plane III) 

(Fig. 6d), 
9. intersection point of straight line and plane II ( shape deviation of plane II - concavity) 

(Fig. 6e). 
The coordinates of points belonging to particular geometrical elements with deviations 

(in the 6 ÷ 8 accuracy class) are entered in the computer working with the CMM. The final 
result shows only the errors generated by the computer and its software. The computer and 
software are treated as a black box. The same test is used in all 14 cases. The minimum 
measurement number of points is used for all geometrical elements. The distribution of 
particular geometrical elements in the 3D geometrical model is shown in Figs. 4-6, and the 
coordinates of these elements are given in Tables 2 to 9.  
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Fig. 3. Distribution of geometrical elements in 3D space. 
 

In measurements, the most common geometrical element is a circle (the shaft-hole 
element). Therefore in the 3D geometrical model there is one ideal circle and three circles 
with different shape deviations (three-lobing, ovality and local flatness). The angle 
distribution of the measuring points is the same for all four circles (Fig. 4a). The 
distribution of four measuring points for a given shape deviation is presented in Fig. 4b, 
Fig. 4c and Fig. 4d. Circles I and II are situated in plane XY, and circles III and IV lie in 
plane XZ. 
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Fig. 4. The distribution of measuring points in circles I-IV: a) close to ideal, b) three-lobing, c) ovality, 

d) flatness. 
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Fig. 5. The distribution of measuring points in: a) plane I, b) plane II, c) plane III, d) line. 

 
 

Table 2. The coordinates of measuring points of circle I [mm] 
 Point 
 #! #2 #3 #4 

X 65.321 37.144 32.679 64.142 
Y 52.856 55.321 30 25.855 
Z 0 0 0 0 

 
Table 3. The coordinates of measuring points of circle II [mm] 

 Point 
 #1 #2 #3 #4 



X 65.319 37.148 32.689 64.136 
Y 52.852 55.318 30.009 25.862 
Z 100 100 100 100 

 
Table 4. The coordinates of measuring points of circle III [mm] 

 Point 
 #1 #2 #3 #4 

X 57.658 43.564 41.337 57.065 
Y 80 80 80 80 
Z 77.660 77.658 65 62.923 

 
Table 5. The coordinates of measuring points of circle IV [mm] 

 Point 
 #1 #2 #3 #4 

X 57.660 43.565 41.339 57.071 
Y 100 100 100 100 
Z 36.428 37.658 25 22.929 

 
Table 6. The coordinates of measuring points of plane I [mm] 

 Point 
 #1 #2 #3 #4 

X 100 100 99.995 100 
Y 70 75 10 15 
Z 80 10 10 85 

 
Table 7. The coordinates of measuring points of plane II [mm] 

 Point 
 #1 #2 #3 #4 

X 0.005 0.002 0.004 0.003 
Y 75 75 10 15 
Z 80 10 10 85 

 
Table 8. The coordinates of measuring points of plane III [mm] 

 Point 
 #1 #2 #3 #4 

X 90 15 10 80 
Y 80 80 80 80 
Z 30 40 10 15 

 
Table 9. The coordinates of measuring points of a line [mm] 

 Point 
 #1 #2 #3 

X 20 35 70 
Y 85 85.008 85 
Z 50 50 50 
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Fig. 6. The determination of relationships: a) coaxiality of circles I and II, b) distance between circles III and 
IV, c) distance between planes I and II, d) angle between planes I and III, e intersection point of straight line 

and plane II. 
 
 

3. TEST RESULTS 
 

Results were grouped in four agreed upon intervals (I-correct, II-incorrect to 1µm, III-
incorrect<1µm, 2µm> and IV-incorrect>2µm). The graphical representation of the test 
results for circles I-IV is given in Fig. 7. The influence of the type of shape deviation on 
calculation results is visible. The examined software determines the equation of circle II 
(with three-lobing) unexpectedly well. On the other hand, the determination of the (almost 
ideal) circle I is a serious problem (21% of errors are larger than 1µm for radius and 18% 
for centre). The differences between circle I and circle III is the location of point 2. The 
difference is big and is should be reflected in the final results. However, we see from 
Fig. 4a and Fig. 4c that it has been neglected. The shift of the centres of circles I – IV leads 
to an error in determining the coaxiality of circles I and II and in determining the distance 
between circles III and IV (Fig. 8). 

Similarly, large errors appear when the width L of the 3D geometrical model is 
calculated from the distance between planes I-III (Fig. 6c). During the actual measurement 
the operator does not know whether planes I and II are ideal, or whether they have any 
shape deviations. If planes I and II are parallel, all the tested software yields the correct 
result, i.e. L=100mm. A problem arises when there is a shape deviation in one (or both) of 
the planes. In this case the software must determine a substitute plane, using its (usually 
unpublished) fitting algorithm. The software determines substitute planes PI* and PII* 
(Fig. 9). Point #3 plays the key role in determining plane I (Fig. 6c). It is this point that 
causes the shift of the whole plane I* in the 3D space. Since the planes determined in this 
way are not parallel, it is not possible, in the mathematical sense, to determine the distance 
between them. Therefore the calculation procedure should end. However, only one 
software did not continue calculations after analyzing the parallelism of substitute planes 
PI* and PII*. As many as 13 pieces of software continued calculations (!). 
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Fig. 7. Measurement results: a) centre of circle I, b) radius of circle I, c) centre of circle II, d) radius of circle 

II, e) centre of circle III, f) g) radius of circle III, g) centre of circle IV, h) radius of circle IV. 
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Fig. 8. Relationships between circles: a) coaxiality of circles I and II, b)distance between circles III and IV. 
 



There appears the question, then, what did the software calculate? It seems that most of 
the algorithms pass from one calculation option to another, without informing the operator 
about the change. The operator is convinced that the result is the distance between planes, 
but what he actually gets may be e.g. the distance between two points (Fig. 9). 
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Fig. 9. The determination of the distance between planes PI and PII: a) the position of substitute planes PI* 
and PII* obtained from calculations, b) the graphical presentation of results. 

 
Such behaviour of the software tested made the author perform additional calculations 

in order to determine the used calculation algorithm Therefore the following distances 
were calculated (Fig.10): 
� the distance between the substitute plane PI* and the centre of plane PII* (point), 
� the distance between substitute plane PII* and the centre of plane PI* (point), 
� the distance between the centres of substitute planes PI* and PII* (point-point).  
These three measuring options appeared in seven cases of software and six cases of 
software apply other unknown calculation procedures. It must be noted that when we 
measure the distance between two non-parallel planes, we get a value which is the result of 
using another calculation option. 

The measurement results for the angle between plane I and plane III are the most 
interesting (Fig. 11). Point #3 (Fig. 6d) in plane I is essential for calculations. Because of 
the position of this point, the substitute plane calculated on the basis of all four points will 
not lie on plane YZ. Some calculation algorithms ignore point #3 in their calculations (and 
use the remaining three points 1, 2, 3 which lie exactly on plane YZ). The question arises 
as to which result is more accurate. Is it the one which is obtained in accordance with 
standard DIN 32880, or the one that ignores point #3 in the calculations? Which 
calculating method is better? Is it the one which performs calculations using all four 
measuring points, or the one which conducts an initial analysis of mutual positions of all 
points in the 3-D space? 
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Fig. 10. Block scheme of determining the distance between two planes. 
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Fig. 11. The determination of the angle between planes I-III: a) the position of the calculated plane PIII and 

the calculated substitute plane PI*; b) the graphical representation of results. 
 

Other irregularities appear when we attempt to determine the common part of plane PII 
and a straight line (Fig. 12). This point is shifted along axis Y, which is astonishing. Since 
all the three points of the line lie on plane XZ, it is impossible to shift the straight line 
along axis Y. However, the shape deviation of plane PII causes the determination of 
substitute plane PII*, which is no longer parallel to plane YZ. The testing software shows 
that there are significant differences in calculations of the common part of the plane and 
the straight line. Four kinds of software yielded astonishing results for axis Y (+1984; 
+990; +2735; +28874), which is the evidence of big irregularities in the calculating 
algorithms. Only three algorithms calculated the position of this point correctly. 
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Fig. 12. The determination of the common part of the plane and the straight line: a) the position of the 
calculated plane PIII and the calculated substitute plane PI*; b) the graphical representation of results. 

 
The whole test has shown that we may expect a wide dispersion of the results we get in 

real measuring conditions, if we use the criterion of minimum measuring points. Only 
three algorithms have less than 10% of errors (Fig. 13a) and these algorithms improve the 
overall assessment of errors for the whole test (Fig. 13b). 
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Fig. 13.The graphical representation of the error values: a) for particular cases of CMM software, b) for the 

whole test. 
 

From Figure 13 we might draw the conclusion that some algorithms are better than 
others. It must be stressed, however, that this figure shows the agreement of the results 
with the LMS method. Whether the LMS method is the best for all tasks, is a different 
issue. If we used another reference method, it could turn out that e.g. the software denoted 
by H, which uses other calculation algorithms, will be better than the product denoted by 
B. The overall conclusion of the test, however, is that with high probability we will obtain 
different results from the same set of input data. To illustrate the results of the software 
test, the software has been grouped in two classes, according to the accuracy during the 
test. 
Class I (software products B, F, J) 

These products have some irregularities, which were visible during measurements with 
a small number of measuring points. Usually the errors involved were in the interval 
<-1µm, +1µm>; disproportionately big errors also appeared, although they were very rare 
(the interval >2µm in Fig. 14). The software in class I is produced by firms which have 
been dealing with coordinate measurements for a long time and which have gained a lot of 
experience. The products of these firms are top quality. The remaining products rate Class 
II. 

Figure 14 illustrates the differences between the two classes; 86.3% of results in class I 
are in the range of accurate results (in accordance with LMS), and only 7% are in the  
<-1µm, +2µm> error interval.  In class II, on the other hand, the results are spread more 



evenly in the four error intervals. The software from category II may yield relatively high 
errors, especially if there are few measuring points and if the points are unevenly 
distributed in the geometrical element. 
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Fig. 14. Graphical presentation of the test results. 
 
 

4.ADDITIONAL TEST 
 
The next step was to verify the results for an increased number of measuring points with 

the same shape deviations. The two programs representing those two classes (“B” and “H” 
software) were tested (Fig. 13a).  
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Fig. 15. The example of the positioning of the measuring points in the circle with ovality: a) basic four 

points, b) positioning of  point 2*, c) positioning of the 32 points. 
 

The number of measuring points was increased from 4 to 1024 (210). The measured 
coordinates of the points (in the example the four points) are input into the computer 
calculating the suitable center and radius of the circle. However, the calculations are 
approximate and the user has no knowledge of the kind of applied algorithm. The error 
may be minimized by increasing the number of measuring points. In the test, the circle 
equation was pointed out with the 4 points. The positioning of those points on the circle 
with ovality deviation is shown in Fig. 15a. Next, the number of points was increased to 8, 
16... and 1024. A further increase of the number is impossible because the maximum 
number of points may not be exceeded. Figure 15a presents how the four points are 
positioned on the circle. To increase the number of points, the angle between the radii R1 
and R2 was divided, and the “measuring point 2*” was placed in the crossing of the 
bisector and the circle (Fig. 15b). The rest of the points were positioned in the same way 
(Fig. 15c). Figure 16 presents the results as a circle equation pointed out with chosen 
CMM programs for the increased number of points. 
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Fig. 16. The influence of the number of measuring points on the values of: a) centres I–IV, b) radiuses I–IV. 
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Fig. 17. Graphical presentation of the test results. 
 

Figure 17 illustrates the differences between the two CMMs software with 4 and 1024 
measuring points. It is visible that the extension of the number of measuring points to 1024 
in a fundamental manner changes the results of the test. The resolution became smaller by 
the difference in performance between CMMs B and H software. A similar result appears 
in remaining CMMs software reckoned of being class II. As a resume, to execute the 
measurement with the scanning method practically one obtains approximate results with 
the adaptation of the LMS method or its modification. 
 
 

5. CONCLUSIONS 
 

The analysis of accuracy of calculation algorithms of CMMs, conducted in the 90s, 
showed a high level of errors in the obtained measurement results [1]. The problem of 
CMM accuracy has been noticed again fairly recently by a number of researchers [2-12]. 
The results of the test conducted by the author on currently-used calculating algorithms 
show that the problem of CMM accuracy is still unsolved. The CMM software may 
significantly influence the accuracy of the whole measurement system. Until now, the 
manufacturers of CMM have been giving the MPEE (maximum permissible error of 
indication of a CMM for size measurement) [14], which refers only to the CMM. The 
computer and the software, or the calculation algorithm, which are now intrinsic parts of 
the CMM measuring system, have been treated as factors which do not introduce any 
errors. However, on the basis of the test which involved 14 different algorithms it can be 
said that the computer and software is the source of significant errors, which in 
unfavourable conditions can be much higher than the MPEE given by the manufacturers. 

The calculation algorithms used in software offered by different manufacturers are not 
identical. In many cases the algorithm used is not the classical Gaussian algorithm (LMS). 
Manufactures introduce modifications of this algorithm; however, they do not inform the 



users about them. It must be stressed that there are no known fitting algorithms which are 
ideal, particularly for measuring geometrical elements with shape deviations. Therefore the 
tendency to modify the basic fitting algorithms is understandable. However, some 
modifications are better suited to detect some kinds of deviations and are absolutely 
useless for detecting others. It seems that we cannot describe all geometrical elements with 
various shape deviations with one fitting function; we will always obtain an approximation 
only. Therefore it seems necessary to work out new fitting algorithms using a specified 
location and number of measurement points, suited to particular shape deviations. 

Some software offers more than one method for finding the circle equation. The centre 
and the radius of a circle may be determined using the following methods: LMS, MZ, MIC 
and MCC. In this case, however, the operator must decide which method to choose and 
what criteria to use in making the decision. For a relatively small number of measuring 
points it is difficult to choose the appropriate fitting method, since fitting methods become 
stable only for a large number of measuring points. The minimal numbers applied today do 
not ensure it; they must be increased considerably and related to the kind of the shape 
deviation. The shape deviations of the real details are complicated and their description is 
difficult, which means the need of application of a large number of measuring points. The 
accuracy of the measurement also depends on the positioning of those points.  
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