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UNCERTAINTY EVALUATION OF THE PROCESSING ALGORITHM OF A TIME-
VARIABLE QUANTITIES IN MULTI-CHANNEL MEASUREMENT SYSTEMS

In this paper the application of the generalised law of uncertainty propagation in determining the standard
uncertainty of measurement in a multi-channel sampling transducer has been proposed. It has been shown that for
time-variable quantities one of the sources of processing uncertainty is the timing jitter between the successive
samples and particular channels of the transducer. The influence of the uncertainty propagation related to the
quantization and sampling of time variable signals by the processing algorithm has been analysed. The analysis
results have been used for the uncertainty propagation evaluation in an impedance components measurement circuit.
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1. INTRODUCTION

In measurement circuits with sampling processing the measured value is determined with an
appropriate processing algorithm, on the basis of the sequences of N actual values measured
directly in P channels of analog-to-digital conversion. Furthermore, depending on the character
and range of variability of the measured values in the particular processing channels, analog
circuits for signal pre-processing, such as non-electric quantity sensors or signal conditioning
systems are used. The processed measurement data are obtained by sampling and quantization of
actual values of the measured signals. Both these processes can also be the source of the
combined uncertainty of the final processing result [1].

The measurement result obtained by means of such a transducer can be treated as obtained by
an indirect method, based on the digitized values measured in the successive N processing and
bound up with the function resulting from the realised processing algorithm. Therefore, the form
of the realised processing algorithm influences the value of the combined standard uncertainty
through the values of the sensitivity coefficients occurring in the equation that describes the
uncertainty propagation law [2-4].

In a P-channel sampling transducer the processing algorithm in the general case can be
described with the matrix function of the matrix variable Y = F(X), as the processing result is
either the output vector or the output matrix, while the input matrix can be written as

X:[Xl X, - X, - XP]’ (l)
where X =[x, X500 0s X500y Xps ], i=1 2, oy P

In order to describe the combined processing uncertainty of such a transducer, the
uncertainty propagation law presented in the Guide [2] should be extended to the case of the
matrix function of a matrix variable. Simultaneously, it needs to be taken into account that



correlation between the input values may appear and the signal pre-processing circuits have an
influence on the value of processing uncertainty.

In this paper the possibility of the application of the generalised law of uncertainty
propagation [4] for determining the combined standard uncertainty of a multi-channel sampling
transducer has been presented. Examples of the use of this method for evaluation of uncertainty
in circuits for the measurement of impedance components have been analysed.

2. GENERALISED LAW OF UNCERTAINTY PROPAGATION

For the scalar output value y bound up with x,,x,,...,x, input values by function f, its
estimate y is obtained by the indirect method on the basis of the model given by

y:f()?lafzv'w)?N)' (2)

The combined standard uncertainty u_(y) of estimate ), on the grounds of approximation

of Eq. (2) by using Taylor series with first-order terms, can be described by the well-known law
of propagation of uncertainties [2]

u2(y)= Zzaf y xi,xj)zz(gx] u(x)+ 2Zzaf 2 ) O

zl/l lle—l

If the nonlinearity of function f'is significant, it is necessary to include in the expression for
u?(y), Eq. (3), higher-order terms of the Taylor series expansion [2].

Equation (3) describing the combined standard uncertainty of the scalar value can be
generalised to the case of a matrix function of a matrix variable [4]. If RxS - dimensional real

matrix measurand Y is modelled by

- - fn(i) fls(i) ~
Y=FX)=| :_ . i | XeR¥™, (4)
le(X) fRS(X)

where the estimate of the measured quantity is marked with a tilde, the derivative of this function
can be defined using the properties of the vector operator [4-5] which converts NxP -
dimensional matrix A into NPx1 - dimensional vector

vecA=| 7| ~where A=[a, a, - a, - a,], a] =[a,a,,...,ay]. (5)



Then, the first derivative of this function with respect to the X variable can be written as
RSxNP - dimensional Jacobian matrix [3-5]:

dY _ dF(X) _ ovecF(X)
dX dX = o(vecX)"

(6)

On the basis of the first-order Taylor approximation in the neighbourhood of the estimate of
measured quantity Y for the vectorial form of this function

vec(Y — SN() =vec(AY) = %vec(AX) (7

and definition of the covariance matrix

C(Y)=E[(vec(Y-Y))(vec(Y-Y))"] RS, (8)
C(X)=E[(vec(X-X))(vec(X-X))"] e R, 9)
having taken (7) into account, the covariance matrix C(Y) can be given by

T
dF dF
CY)r—CX)| — | , 10
(Y) X ( )( dX] (10)
where the derivative's matrix is described by formula (6).

Equation (10) presents the generalized law of uncertainty propagation [4]. For the
multidimensional measured variable, the covariance matrix contains variances of the successive
variables on its principal diagonal, while the elements lying out of the principal diagonal are the

variable's covariances. If the particular variables are independent, the covariance matrix takes the
form of a diagonal matrix.

3. UNCERTAINTY PROPAGATION IN THE MULTI-CHANNEL SAMPLING
TRANSDUCER

In a multi-channel sampling transducer three basic stages of signal processing can be
identified [3]:
« Pre-processing and conditioning of analog input signals.
« Sampling and quantization operation.
« Determining of output quantity values using the algorithm for processing of digitised data

records.

All the mentioned stages of signal processing are the source of the combined uncertainty of
the final measurement result that can be described by Eq. (10). The influence of signal pre-
processing has been discussed in [3]. In presented paper one has focused on the analysis of



uncertainty propagation related to sampling and quantization of time variable signals by the
measurement algorithm.

For the measurement of time variable quantities, the processing result is the function of input
quantities and time, because both input quantities and quantization process are time-dependent.
In a one-channel transducer, the time variability of the measured value and the influence of the
uncertainty connected with the timing jitter between adjacent samples can be presented as a
vector function

y=f(x,t), (11)

where x=g(t) is a vector containing values of time dependent input quantities and
t' = [¢,,t,,...,¢,,...,t, ] 1s @ vector containing values of the successive sampling instants.

The time value is determined with the indirect method by summing up the successive intervals
between sampling instants. For any sampling instant #, it can be described as

t, =1, +7,+...+7, =f(1), (12)

where t' =[7,,7,,...,7,,....,Ty].

For uniform sampling, values of the successive time intervals 7, are the same nominal values
corresponding to the sampling period 7. Due to the properties of the real sampling and hold
circuit and the uncertainty of the sampling clock generator, the sampling period values are also
time dependent, i.e. they depend on the successive sampling instants. Hence

1 0 0
1 1 -~ 0

t=Et= N (13)
11 1

For a multi-channel transducer, instability of phase relations between particular transducer
channels should be additionally taken into account. Then, the output matrix can be written as a
function of matrix variable

Y =FX,T), (14)

where X=G(T) is a NxP - dimensional matrix containing in its columns values of time
dependent input quantities (1), and T=[t, t, - t, --- t,] € R""is a matrix containing in its

columns values of the successive sampling instants of a P - channel sampling transducer.

In the real measurement circuit the input signals of the sampling transducer are not available
for a direct measurement. The values of these signals can be evaluated on the basis of equations
(11) or (14) describing the operations realised by the processing algorithm as well as equations
showing the functioning of the signal pre-processing circuit [3]. The input signal uncertainty of
the transducer can be determined on the grounds of the covariance matrix of the digitised output
signals of the analog-to-digital converters. The values of matrix elements can be estimated during



the calibration procedure or they can be based on the known parameters of processing channels
elements of the sampling transducer.

In a one-channel transducer the processing algorithm is described by the vector Eq. (11) for
which the uncertainty propagation law is as follows

of '
Jof @t cx) cxt) (&] ReR
oy delced G | | = o
5

ox dt
Having taken function (11) into consideration, the derivative occurring in Eq. (15) with
respect to the time vector t can be modelled by

df_ofdg of 16
dt ogdt ot
As the measured quantity is not time but the intervals between the successive sampling

instants determined with values of the vector 1, having considered that for uniform sampling on
the basis of (13)

at _ _
e (17)
dt dt)'
C(t) = EC(T)(E] (18)
and the Eq. (15) can be converted into
(QJT
|of df | C(x) C(x,t)|\0x RxR
c<y>~[ N dr}{cu,m D[ ere (19)

£ T
dt
Assuming that errors related to the successive sampling intervals are the realizations of the
zero-mean independent random variables with variance o, Eq. (18) can be given by

Ct)=Ec1,E"=c’EE"=02|. _ . 7| (20)



Respectively, for the matrix function (14) describing the processing algorithm in the multi-
channel transducer, the uncertainty propagation law is written as follows

oF '
| OF dF | C(X) C(X,T) (&] RPxRP
dT

where elements of submatrices —, — are the sensitivity coefficients of the output quantities

with respect to the successive samples of input quantities and the successive sampling instants,
and the partitioned covariance matrix of the independent variable of Eq. (14) that occurs in this
equation

C(X) C(X,T)} c R2NVP2NP (22)

c(x T])Z[C(T,X) C(T)

consists of four blocks corresponding to the variance and covariance for the scalar function.
Submatrices lying on the principal diagonal of matrix (22) — C(X) and C(T) - correspond to
variances of matrix variables X and T, respectively. Whereas, submatrices lying out of the
principal diagonal — C(X, T) and C(T, X) - correspond to covariances between these variables.
Like for the classical covariance matrix, matrix (22) is the block-symmetric matrix , for which

C(X,T)=C(T,X)" e R", (23)

Having considered (13), the form of matrix T and the timing jitter in P channels of the
sampling transducer, matrix ¥ =[71,,7,,...,T,,...,T ) containing values of all NxP intervals can

be defined. Then

ﬂ=1,,® E e RV, (24)
a¥
dT dT '
C(T) _EC(T)(EJ : (25)

where ® denotes the Kronecker product [4-5].
If additionally the assumption is satisfied that the random wvariables in the successive
measurements and in addition between the sampling transducer’s channels are independent,

C(¥Y)= diag(ofIIN,UfZIN,...,UilN,...,O';IN) , (26)

and having taken (24) into consideration



C(T) = diag(c’,,62,,...,02,...,0 ) ®EE". 27
The two-channel transducer realising an algorithm of impedance components measurement

will be presented as an example of the calculation method of the sensitivity coefficients occurring
in Eq. (21).

4. APPLICATION EXAMPLE

A two-channel sampling transducer with proper input signal pre-processing circuits together
with a sinusoidal excitation generator can be used to measure impedance components [3, 6-10].

One of the frequently used algorithms for the determination of impedance components is the
indirect method, in which on the grounds of the estimates of orthogonal components of voltage
and current amplitudes, the values of impedance components in the Cartesian co-ordinate system
can be calculated

Ul +U1 Ul -U.I
R — C ; 25‘ S , X — S ;’ 20 S (28)
1. +1; 1. +1;
and to determine the components values of voltage and current amplitudes the discrete Fourier
transform is used. It is given by [8]

Y :%ATX, (29)

where: Y=y, yu]zﬁc gf} X=[i u] eR"?,

AT=[a"(l) aT(2) --- aT(n) --- aT(N)] e R*¥,

a(n) =[sinnw,7,cosnw,7].
The value of scaling factor 2/N in Eq. (29) results from the definition of coefficients of discrete
Fourier series.

To simplify the consideration it has been assumed that the sampling process is synchronous
with the angular frequency @, of the forcing generator, and the uncertainties related to the
synchronisation process can be ignored.

The processing Eq. (29) is a function of the input variable X and the matrix of Nx2 sampling
instants T, for which according to the formula (21), the covariance matrix of voltage and current
components C(Y) can be calculated. The derivatives found in Eq. (21) are given by formulae

Yy 2 }
E:W(Iz ®AT) e R, (30)

T
dY_0Y 0ATOA OVOX _pay 1)
dT 0AT A OT 0XOT



K, (1, @XT)a—AJr 2( [,OAT Z)T( (32)

av_2
dr N

where K3, is 4x4 - dimensional commutation matrix [4-5], and 2Nx2N - dimensional matrices of
partial derivatives

0A .

S=o, H ® diag(a(1),a(2),....a(n),...a(N)I, ®R_,)K .. (33)
X _ diag T 2| (34)
ot o, " o,

containing the sensitivity coefficients of factors of function (29) with respect to the successive
sampling instants. Matrix Ky, occurring in formula (33) is also a commutation matrix, whereas
R, is a m/2 angle rotation matrix [8].

The value of matrix elements (33) can be obtained before the measurement starts, after the
generator’s angular frequency @, and the sampling period 7 are defined. Values of derivatives
occurring in matrix (34) can be calculated experimentally during the execution of the
measurement by determining the values of increments of the input quantity between successive
sampling instants. As the signals measured in the analysed example are sinusoidal, and the
processing results are the coefficients values of a model of these signals given by

X =AY, (35)

the values of the sensitivity coefficients (34) can be obtained more precisely as

oX _ 0X 0A (36)
T 0A 0T’
Wherea—X:YT®1N.
OA
Hence finally
day 2 T 1+\OA
— = LRXNH+(Y'®A . 37
= K (LX) ) (37)

In many cases it can be assumed that the covariance matrix (22) is simplified to its block-
diagonal form, if matrices (23) are null submatrices. Such a situation happens if the measured
quantity X does not influence the values of time intervals. Then equation (22) can be written in a
simplified form

OF [(SF) OF
oT

)~ 20 —cm[ ox ] = Cy(Y)+Cy(Y), (38)



containing two components: time independent Cx(Y) - related to measurement uncertainty of
input quantities X and time dependent Cr(Y) - resulting from uncertainty of determining the
sampling instants.

If additionally it can be assumed that errors connected with measurements of successive
values of measured quantities are the realizations of the zero-mean independent random variables

with identical variances o in both transducer channels, and o7, =o', = o, then

2
CX(Y)Zﬁailzﬁ (39)
(K, (I, ®X"PI, ®X)K,, +
CT(Y):SO-; 22(T2 . ) ( 2 ) 22 ; . , (40)
N2 | +(YT®AT)P(Y®A)+2(YT ® AT)P(L, ®X)K.,,

The covariance matrix (40) contains three components weighted by matrix P, which depends
on the form of the processing algorithm . The first component considers the influence of the
measured quantity X on the uncertainty of the processing result , the second one results from the
calculation method of the matrix of sensitivity coefficients (36). The third component with a
double value contains components of the covariance matrix that arise from the simultaneous
influence of both these sources of uncertainty.

To determine the uncertainty of impedance components, the obtained covariance matrix C(Y)
needs to be used, applying the uncertainty propagation law for formulae (28) [3].

5. CONCLUSIONS

The method for determining of the processing uncertainty in a multi-channel sampling
transducer presented in this paper ensures that evaluations of combined uncertainty of
measurement results are obtained for time-variable multidimensional measured quantities. With
regard to the matrix notation used in this method, apart from the evaluation of variances for the
particular variables, all the covariance evaluations collected in the covariance matrix are also
determined. The application of the generalised law of uncertainty propagation makes it possible
to consider all the essential sources of uncertainty occurring in the multi-channel sampling
transducer, including the influence of timing jitter between the successive samples in the separate
processing channel, as well as the cases of interdependence between all the variables occurring in
the particular processing channels.

The covariance matrix notation in the form of the expression containing sensitivity
coefficients can be used to minimize the measurement uncertainty by identification of the most
essential components of the combined processing uncertainty.
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OCENA NIEPEWNOSCI ALGORYTMU PRZETWARZANIA WIELKOSCI ZMIENNYCH W CZASIE
W WIELOKANALOWYCH SYSTEMACH POMIAROWYCH

Streszczenie

W pracy przedstawiono mozliwos¢ wykorzystania uogoélnionego prawa propagacji niepewnosci (10) do
wyznaczenia zlozonej niepewnosci standardowej P-kanatowego przetwornika probkujacego. Algorytm
przetwarzania dla takiego przetwornika mozna w ogdélnym przypadku opisa¢ funkcja macierzowa zmiennej
macierzowej, gdyz wynikiem przetwarzania jest wektor lub macierz wielkosci wyjSciowych. Jezeli wielkosci
mierzone sg zmienne w czasie, wynik przetwarzania jest rowniez zalezny od czasu, co mozna opisa¢ funkcja (14).
Warto$¢ czasu jest okreslana metoda posrednia poprzez sumowanie kolejnych odcinkéw czasu pomigdzy chwilami
probkowania (12). W przypadku proébkowania rownomiernego wartos$ci elementow wektora czasu, sg okreslane
metoda zliczania kolejnych wartoéci okresu probkowania o nominalnie jednakowej wartosci 7 . Dla przetwornika
jednokanatowego mozna to przedstawi¢ w postaci funkcji (13). Niepewno$§¢ zwiazana z niestalo$cia zwiazkow
fazowych pomigdzy kolejnymi chwilami prébkowania dla przetwornika wielokanalowego zebranymi w macierzy T,
mozna przedstawi¢c w postaci macierzy kowariancji (25). Ztozona niepewno$¢ standardowa przetwornika
probkujacego wynikajaca z propagacji niepewnosci zwiazanych z wielko$cia mierzona X oraz niestaloscia
zwiazkow fazowych pomigdzy probkami i kanatami przetwornika T opisuje wtedy wzor (21).

Wykorzystanie tej metody do oceny niepewnosci przetwarzania pokazano na przyktadzie uktadu do pomiaru
sktadowych impedancji, w ktorym jest realizowany algorytm opisany rownaniem (29). Uwzgledniajac postaé
sygnatu wejsciowego, wspotczynniki wrazliwosci wielko$ci wyjsciowej algorytmu Y mozna wyznaczy¢ ze Wzorow
(30)-(34). Po przyjeciu pewnych zatozen upraszczajacych, dotyczacych wiasciwosci zmiennych losowych
zwiazanych z bl¢gdami procesu probkowania i kwantowania sygnatow, ztozona niepewno$¢ standardowa algorytmu
(29) opisuja réwnania (38)-(40).



