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UNCERTAINTY EVALUATION OF THE PROCESSING ALGORITHM OF A TIME-
VARIABLE QUANTITIES IN MULTI-CHANNEL MEASUREMENT SYSTEMS  

 
 

In this paper the application of the generalised law of uncertainty propagation in determining the standard 
uncertainty of measurement in a multi-channel sampling transducer has been proposed. It has been shown that for 
time-variable quantities one of the sources of processing uncertainty is the timing jitter between the successive 
samples and particular channels of the transducer. The influence of the uncertainty propagation related to the 
quantization and sampling of time variable signals by the processing algorithm has been analysed. The analysis 
results have been used for the uncertainty propagation evaluation in an impedance components measurement circuit.  
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1. INTRODUCTION 
 
In measurement circuits with sampling processing the measured value is determined with an 

appropriate processing algorithm, on the basis of the sequences of N actual values measured 
directly in P channels of analog-to-digital conversion. Furthermore, depending on the character 
and range of variability of the measured values in the particular processing channels, analog 
circuits for signal pre-processing, such as non-electric quantity sensors or signal conditioning 
systems are used. The processed measurement data are obtained by sampling and quantization of 
actual values of the measured signals. Both these processes can also be the source of the 
combined uncertainty of the final processing result [1]. 

The measurement result obtained by means of such a transducer can be treated as obtained by 
an indirect method, based on the digitized values measured in the successive N processing and 
bound up with the function resulting from the realised processing algorithm. Therefore, the form 
of the realised processing algorithm influences the value of the combined standard uncertainty 
through the values of the sensitivity coefficients occurring in the equation that describes the 
uncertainty propagation law [2-4]. 

In a P-channel sampling transducer the processing algorithm in the general case can be 
described with the matrix function of the matrix variable Y = F(X), as the processing result is 
either the output vector or the output matrix, while the input matrix can be written as 

 
 ][ 21 Pi xxxxX LL= , (1) 
 
where Pixxxx Niniiii ...,,2,1],,,,,,[ 21 == KKTx . 

In order to describe the combined processing uncertainty of such a transducer, the 
uncertainty propagation law presented in the Guide [2] should be extended to the case of the 
matrix function of a matrix variable. Simultaneously, it needs to be taken into account that 



correlation between the input values may appear and the signal pre-processing circuits have an 
influence on the value of processing uncertainty.  

In this paper the possibility of the application of the generalised law of uncertainty 
propagation [4] for determining the combined standard uncertainty of a multi-channel sampling 
transducer has been presented. Examples of the use of this method for evaluation of uncertainty 
in circuits for the measurement of impedance components have been analysed. 

                                                                                                                                                 
 

2. GENERALISED LAW OF UNCERTAINTY PROPAGATION 
 
For the scalar output value y bound up with Nxxx ,,, 21 K  input values by function f, its 

estimate y~  is obtained by the indirect method on the basis of the model given by 
 

 )~,,~,~(~
21 Nxxxfy K= . (2) 

 
The combined standard uncertainty )(yuc  of estimate y~ , on the grounds of approximation 

of Eq. (2) by using Taylor series with first-order terms, can be described by the well-known law 
of propagation of uncertainties [2] 
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If the nonlinearity of function f is significant, it is necessary to include in the expression for 
)(2 yuc , Eq. (3), higher-order terms of the Taylor series expansion [2]. 

Equation (3) describing the combined standard uncertainty of the scalar value can be 
generalised to the case of a matrix function of a matrix variable [4]. If R×S - dimensional real 
matrix measurand Y~  is modelled by  
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where the estimate of the measured quantity is marked with a tilde, the derivative of this function 
can be defined using the properties of the vector operator [4-5] which converts N×P - 
dimensional matrix A into NP×1 - dimensional vector  
 

    . ],,[,][        where , 2121
2

1

NiiiiPi

P

aaavec KLL
M

==



















= TaaaaaA

a

a
a

A  (5) 

 



Then, the first derivative of this function with respect to the X variable can be written as 
RS×NP - dimensional Jacobian matrix [3-5]: 
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On the basis of the first-order Taylor approximation in the neighbourhood of the estimate of 

measured quantity Y~  for the vectorial form of this function 
 

 )()()~( X
X
FYYY ∆≈∆=− vec

d
dvecvec  (7) 

 
and definition of the covariance matrix  
 
 ∈−−= ][( ))( )~()~(E)( TYYYYYC vecvec ℝRS×RS, (8) 

 
 ∈−−= ]([( )) )~()~(E)( TXXXXXC vecvec ℝNP×NP, (9) 

 
having taken (7) into account, the covariance matrix C(Y) can be given by 
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where the derivative's matrix is described by formula (6).  

Equation (10) presents the generalized law of uncertainty propagation [4]. For the 
multidimensional measured variable, the covariance matrix contains variances of the successive 
variables on its principal diagonal, while the elements lying out of the principal diagonal are the 
variable's covariances. If the particular variables are independent, the covariance matrix takes the 
form of a diagonal matrix.  

 
 

3. UNCERTAINTY PROPAGATION IN THE MULTI-CHANNEL SAMPLING 
TRANSDUCER 

 
In a multi-channel sampling transducer three basic stages of signal processing can be 

identified [3]: 
• Pre-processing and conditioning of analog input signals. 
• Sampling and quantization operation. 
• Determining of output quantity values using the algorithm for processing of digitised data 

records. 
All the mentioned stages of signal processing are the source of the combined uncertainty of 

the final measurement result that can be described by Eq. (10). The influence of signal pre-
processing has been discussed in [3]. In presented paper one has focused on the analysis of 



uncertainty propagation related to sampling and quantization of time variable signals by the 
measurement algorithm. 

For the measurement of time variable quantities, the processing result is the function of input 
quantities and time, because both input quantities and quantization process are time-dependent. 
In a one-channel transducer, the time variability of the measured value and the influence of the 
uncertainty connected with the timing jitter between adjacent samples can be presented as a 
vector function 
 ),( txfy = , (11) 
 
where )(tgx =  is a vector containing values of time dependent input quantities and 

],,,,,[ 21 Nn tttt KK=Tt  is a vector containing values of the successive sampling instants. 
The time value is determined with the indirect method by summing up the successive intervals 

between sampling instants. For any sampling instant tn it can be described as  
 
 )f(21 τ=+++= nnt τττ K , (12) 
 
where ],,,,,[ 21 Nn ττττ KK=Tτ . 

For uniform sampling, values of the successive time intervals τn are the same nominal values 
corresponding to the sampling period τ~ . Due to the properties of the real sampling and hold 
circuit and the uncertainty of the sampling clock generator, the sampling period values are also 
time dependent, i.e. they depend on the successive sampling instants. Hence 
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For a multi-channel transducer, instability of phase relations between particular transducer 

channels should be additionally taken into account. Then, the output matrix can be written as a 
function of matrix variable 
 

 Y = F(X, T), (14) 
 
where )(TGX=  is a N×P - dimensional matrix containing in its columns values of time 
dependent input quantities (1), and ∈= ][ 21 Pi ttttT LL  ℝN×P is a matrix containing in its 
columns values of the successive sampling instants of a P - channel sampling transducer. 

In the real measurement circuit the input signals of the sampling transducer are not available 
for a direct measurement. The values of these signals can be evaluated on the basis of equations 
(11) or (14) describing the operations realised by the processing algorithm as well as equations 
showing the functioning of the signal pre-processing circuit [3]. The input signal uncertainty of 
the transducer can be determined on the grounds of the covariance matrix of the digitised output 
signals of the analog-to-digital converters. The values of matrix elements can be estimated during 



the calibration procedure or they can be based on the known parameters of processing channels 
elements of the sampling transducer.  

In a one-channel transducer the processing algorithm is described by the vector Eq. (11) for 
which the uncertainty propagation law is as follows 
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Having taken function (11) into consideration, the derivative occurring in Eq. (15) with 

respect to the time vector t can be modelled by 
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As the measured quantity is not time but the intervals between the successive sampling 

instants determined with values of the vector τ, having considered that for uniform sampling on 
the basis of (13)  
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and the Eq. (15) can be converted into 
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Assuming that errors related to the successive sampling intervals are the realizations of the 

zero-mean independent random variables with variance 2
τσ , Eq. (18) can be given by 
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Respectively, for the matrix function (14) describing the processing algorithm in the multi-
channel transducer, the uncertainty propagation law is written as follows 
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where elements of submatrices 
T
F

X
F

d
d,

∂
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 are the sensitivity coefficients of the output quantities 

with respect to the successive samples of input quantities and the successive sampling instants, 
and the partitioned covariance matrix of the independent variable of Eq. (14) that occurs in this 
equation 
 

 ( ) ∈
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),()(][ TCXTC
TXCXCTXC ℝ2NP×2NP, (22) 

 
consists of four blocks corresponding to the variance and covariance for the scalar function. 
Submatrices lying on the principal diagonal of matrix (22) – C(X) and C(T) - correspond to 
variances of matrix variables X and T, respectively. Whereas, submatrices lying out of the 
principal diagonal – C(X, T) and C(T, X) - correspond to covariances between these variables. 
Like for the classical covariance matrix, matrix (22) is the block-symmetric matrix , for which 
 
 ∈= TXTCTXC ),(),( ℝNP×NP. (23) 

 
Having considered (13), the form of matrix T and the timing jitter in P channels of the 

sampling transducer, matrix ],,,,,[ 21 pi ττττΨ KK=  containing values of all N×P intervals can 
be defined. Then 
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where ⊗ denotes the Kronecker product [4-5]. 

If additionally the assumption is satisfied that the random variables in the successive 
measurements and in addition between the sampling transducer’s channels are independent, 

 
 ),,,,,diag()( 222

2
2
1 NPNiNN IIIIΨC ττττ σσσσ KK= , (26) 

 
and having taken (24) into consideration 

 



 TΞΞTC ⊗= ),,,,,diag()( 222
2

2
1 Pi ττττ σσσσ KK . (27) 

 
The two-channel transducer realising an algorithm of impedance components measurement 

will be presented as an example of the calculation method of the sensitivity coefficients occurring 
in Eq. (21). 

 
4. APPLICATION EXAMPLE 

 
A two-channel sampling transducer with proper input signal pre-processing circuits together 

with a sinusoidal excitation generator can be used to measure impedance components [3, 6-10]. 
One of the frequently used algorithms for the determination of impedance components is the 

indirect method, in which on the grounds of the estimates of orthogonal components of voltage 
and current amplitudes, the values of impedance components in the Cartesian co-ordinate system 
can be calculated 
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and to determine the components values of voltage and current amplitudes the discrete Fourier 
transform is used. It is given by [8] 
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The value of scaling factor 2/N in Eq. (29) results from the definition of coefficients of discrete 
Fourier series. 

To simplify the consideration it has been assumed that the sampling process is synchronous 
with the angular frequency ωg of the forcing generator, and the uncertainties related to the 
synchronisation process can be ignored.  

The processing Eq. (29) is a function of the input variable X and the matrix of N×2 sampling 
instants T, for which according to the formula (21), the covariance matrix of voltage and current 
components C(Y) can be calculated. The derivatives found in Eq. (21) are given by formulae 
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where K22 is 4×4 - dimensional commutation matrix [4-5], and 2N×2N - dimensional matrices of 
partial derivatives 
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containing the sensitivity coefficients of factors of function (29) with respect to the successive 
sampling instants. Matrix KN2 occurring in formula (33) is also a commutation matrix, whereas 
Rπ/2 is a π/2 angle rotation matrix [8]. 

The value of matrix elements (33) can be obtained before the measurement starts, after the 
generator’s angular frequency ωg and the sampling period τ are defined. Values of derivatives  
occurring in matrix (34) can be calculated experimentally during the execution of the 
measurement by determining the values of increments of the input quantity between successive 
sampling instants. As the signals measured in the analysed example are sinusoidal, and the 
processing results are the coefficients values of a model of these signals given by  
 
 X = AY, (35) 
 
the values of the sensitivity coefficients (34) can be obtained more precisely as 
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In many cases it can be assumed that the covariance matrix (22) is simplified to its block-

diagonal form, if matrices (23) are null submatrices. Such a situation happens if the measured 
quantity X does not influence the values of time intervals. Then equation (22) can be written in a 
simplified form 
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containing two components: time independent CX(Y) - related to measurement uncertainty of 
input quantities X and time dependent CT(Y) - resulting from uncertainty of determining the 
sampling instants.  

If additionally it can be assumed that errors connected with measurements of successive 
values of measured quantities are the realizations of the zero-mean independent random variables 
with identical variances 2

xσ  in both transducer channels, and 22
2

2
1 τττ σσσ == , then 
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The covariance matrix (40) contains three components weighted by matrix P, which depends 
on the form of the processing algorithm . The first component considers the influence of the 
measured quantity X on the uncertainty of the processing result , the second one results from the 
calculation method of the matrix of sensitivity coefficients (36). The third component with a 
double value contains components of the covariance matrix that arise from the simultaneous 
influence of both these sources of uncertainty.  

To determine the uncertainty of impedance components, the obtained covariance matrix C(Y) 
needs to be used, applying the uncertainty propagation law for formulae (28) [3]. 
 
 

5. CONCLUSIONS 
 

The method for determining of the processing uncertainty in a multi-channel sampling 
transducer presented in this paper ensures that evaluations of combined uncertainty of 
measurement results are obtained for time-variable multidimensional measured quantities. With 
regard to the matrix notation used in this method, apart from the evaluation of variances for the 
particular variables, all the covariance evaluations collected in the covariance matrix are also 
determined. The application of the generalised law of uncertainty propagation makes it possible 
to consider all the essential sources of uncertainty occurring in the multi-channel sampling 
transducer, including the influence of timing jitter between the successive samples in the separate 
processing channel, as well as the cases of interdependence between all the variables occurring in 
the particular processing channels. 

The covariance matrix notation in the form of the expression containing sensitivity 
coefficients can be used to minimize the measurement uncertainty by identification of the most 
essential components of the combined processing uncertainty.  
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OCENA NIEPEWNOŚCI ALGORYTMU PRZETWARZANIA WIELKOSCI ZMIENNYCH W CZASIE 
W WIELOKANAŁOWYCH SYSTEMACH POMIAROWYCH  

 
Streszczenie  

 
W pracy przedstawiono możliwość wykorzystania uogólnionego prawa propagacji niepewności (10) do 

wyznaczenia złożonej niepewności standardowej P-kanałowego przetwornika próbkującego. Algorytm 
przetwarzania dla takiego przetwornika można w ogólnym przypadku opisać funkcją macierzową zmiennej 
macierzowej, gdyż wynikiem przetwarzania jest wektor lub macierz wielkości wyjściowych. Jeżeli wielkości 
mierzone są zmienne w czasie, wynik przetwarzania jest również zależny od czasu, co można opisać funkcją (14). 
Wartość czasu jest określana metodą pośrednią poprzez sumowanie kolejnych odcinków czasu pomiędzy chwilami 
próbkowania (12). W przypadku próbkowania równomiernego wartości elementów wektora czasu, są określane 
metodą zliczania kolejnych wartości okresu próbkowania o nominalnie jednakowej wartości τ~ . Dla przetwornika 
jednokanałowego można to przedstawić w postaci funkcji (13). Niepewność związaną z niestałością związków 
fazowych pomiędzy kolejnymi chwilami próbkowania dla przetwornika wielokanałowego zebranymi w macierzy T, 
można przedstawić w postaci macierzy kowariancji (25). Złożona niepewność standardowa przetwornika 
próbkującego wynikająca z propagacji niepewności związanych z wielkością mierzoną X oraz niestałością 
związków fazowych pomiędzy próbkami i kanałami przetwornika T opisuje wtedy wzór (21). 

Wykorzystanie tej metody do oceny niepewności przetwarzania pokazano na przykładzie układu do pomiaru 
składowych impedancji, w którym jest realizowany algorytm opisany równaniem (29). Uwzględniając postać 
sygnału wejściowego, współczynniki wrażliwości wielkości wyjściowej algorytmu Y można wyznaczyć ze wzorów 
(30)-(34). Po przyjęciu pewnych założeń upraszczających, dotyczących właściwości zmiennych losowych 
związanych z błędami procesu próbkowania i kwantowania sygnałów, złożoną niepewność standardową algorytmu 
(29) opisują równania (38)-(40).  


