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DATA COMPRESSION USING PRONY'S METHOD AND WAVELET TRANSFORM IN 
POWER QUALITY MONITORING SYSTEMS* 

 
 

The paper presents a new method for data compression that can be used in power quality monitoring 
systems. Described algorithm offers high compression ratio and keeps good accuracy of the reconstructed 
signals. The algorithm uses a modified Prony’s method for initial power waveform modeling (basic parameters 
of estimation) as well as wavelet transform for additional reduction of compression artifacts present in the Prony 
model of the analysed signal. The combination of the Prony’s method and wavelet transform enables obtaining 
effective compression of real signals observed in monitoring systems. It also gives information about harmonics 
and transient oscillatory components of power waveforms that can be used for the power quality analysis. 
Examples of real signals recorded in power monitoring systems are presented in the paper as well as discussion 
of compression efficiency for different sets of compression artefacts level. 
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1. INTRODUCTION 
 
Recently, due to the considerable increase in the number of power receivers as well as 

gradual liberalization of the power market, more attention has been paid to its quality. 
Knowledge of the performance of the power system and the quality of the power signal sent, 
enables modernization and installation of additional protection for often expensive electric 
and electronic devices. Nowadays, there are a lot of different devices for the analysis and 
monitoring of the power quality. Price depending, they have the following parameters: 
- measurement resolution: 12, 16 bits 
- measurement frequency: 4 kHz, 6.4 kHz, 8 kHz, 12.8 kHz and more 
- number of inputs: 6, 7, 8 
- data memory: from 128 kB to 512 MB 

These parameters indirectly determinate the maximum time of the possible storage of the 
parameters and signals from the power network. 

While recording power signals at the frequency of 12.8 kHz, resolution of 16 bits and 8 
analyzed inputs, the time of  continuous recording for the memory of 512 MB, is about 44 
minutes. 

Hence, the compression of data is used [1,2]. 
The most often used method of data compression is the recording of some parts of the 

signal only (with some surrounding), which exceed the parameters determined by the person 
operating the device, for example: instantaneous voltage, content of harmonics, frequency 
deviation of a basic harmonic and alike. This method, however, often results in the loss of 
important information about the signal, mainly due to misfit of adjustment to a definite power 
network. The advantage of this method is its high compression ratio. There also exist methods 
of lossless compression, which are used in the power signal  bases. These are the algorithms 
related to the commonly used data compression methods, for example ZIP or ARJ archives 



applying the algorithm LZ77 [3,4] also used in the signal archive files of the PQDIF type [5]. 
Their disadvantage, however, is a low compression ratio, limiting its application. 

In the article, a new method of loss compression of the power waveform, enabling 
obtaining a high, compression ratio, maintaining at the same time information included in the 
signal, has been presented. 
 
 

2. METHOD DESCRIPTION 
 

A general principle of compression is presented in Fig. 1 [6]. The original data (in this 
case the data from the monitoring system) are compressed, and a new data format is obtained 
which occupies fewer number of bits in comparison with the original data. 
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Fig. 1. The principle of data compression. 
 

Such a representation of signal, so called compressed signal is archived or sent to a 
receiver, where it is further reconstructed (decompressed), to obtain a reconstructed signal. 
The ratio between the number of bits of original signal and the compressed one is called the 
compression ratio. 

Presented algorithm belongs to lossy compression methods. It means that the 
decompressed data may be different from the original data. The differences between the 
original data and the reconstructed ones is called compression artifacts. In this paper 
compression artifacts (reconstruction errors) are represented by the following equation: 
 
 d(x, y) = |x - y|, (1) 
 
where: }{ nx  – original signal, }{ ny  – signal reconstructed. 
A general concept of the proposed algorithm for the power waveform compression is 
presented in Fig. 2 [7,8]. 

 
 

Fig. 2. Power waveform compression – general algorithm. 
 



A signal from a measuring system is compared with the signal that is generated from 
Prony's model. If the difference between the original signal and the signal from the model 
exceeds threshold errors then sample signals are collected for a new Prony’s model 
estimation, which will be presented further on.  At the same time samples of the difference 
between the original signal and signal from Prony's model are collected for the wavelet 
decomposition. If the signal buffers are full, new wavelet and Prony's model estimation is 
started and next step buffers are cleaned. If new wavelet decomposition is finished it gives 
new decomposition coefficients that must be compressed, too. 

Subsequent smallest wavelet decomposition coefficients are nullified (hard threshold 
elimination) [9,10] until the assumed reconstruction error is obtained. The position of wavelet 
coefficient non-zero blocs is registered. 

Information about their location together with non-zero coefficients is the part of the 
compression frame (Fig. 3). The remaining parts are the parameters determined from the 
Prony’s model as well as the time index for the event which resulted in the new estimation. 

This algorithm of the signal analysis enables efficient compression of the power signal due 
to the modeling of oscillating, harmonic and interharmonic phenomena by means of the 
Prony’s method as well as the compression of impulse signals by wavelet compression. 

Combination of these methods allow for the compression of all power waveform described 
by the norms [11,12], for instance: transient oscillatory, notching, harmonics, transient 
impulsive, sags, swells etc.  
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Fig. 3. Signal compressed frame – general model.  

 
The signal compressed in this way can be reconstructed later for events visualization and 
power quality analysis. It is shown in Fig. 4. 
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Fig. 4. Power waveform decompression – general algorithm. 
 

Signal decompression consists in generating signal samples from the Prony's model and 
summing up their values and the samples obtained from the wavelet composition. 

There is also the possibility to get valuable information from the Prony's model about 
oscillatory components of the analyzed signal like: amplitude of components, frequency, 
phase, and dumping factor. 

The advantage of the presented method is also the ability to calculate amplitude and 
frequency of harmonics which precision is higher than for instance that of popular fast Fourier 
transformation [13].  

Presented compression algorithm uses the Prony's method [14 - 17] (in fact modified last 
squares of it [18]) which is used for harmonics and transient oscillatory modelling. It consists 
in presenting a signal as a linear combination of exponential function with the assumed 
parameters [Eq. 2]. 
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for Nn ≤≤1 , where: N – is length of signal, p – is quantity of exponentials, T – is the 
sample interval in seconds, 

k
A – is the amplitude of the complex exponential, 

k
α – is the 

damping factor in seconds-1, 
k

f – is sinusoidal frequency in Hz, and 
k

Θ – is the sinusoidal 

initial phase in radians. 
Described compression method also includes wavelet transformation [19,20,21], which 

aim is to project impulse signals containing noise. Wavelet compression is based on the 
assumption that all signals can be represented with sufficient accuracy by a reduced number 
of decomposition coefficients.  

A discrete wavelet db8 of Daubechies family with four decomposition levels and hard 
threshold coefficient elimination was used for the compression [10]. 
 
 

3. SIMULATIONS 
 

Real signals of the resolution of 12 bits and sampling frequency of 4 kHz were used for the 
compression and reconstruction algorithm analysis. Ten different signals with the most 
diversified transient were chosen. The recordings show:  
- Transient impulsive events: signal test_1 
- Transient oscillatory events: signals test_4, test_8 
- Harmonics distortion: signal test_2, test_5, test_7, test_10 
- RMS Variations – Sags: signal test_4, test_8 
- RMS Variations – Interruptions: signal test_3, test_9 



They were released by the events occurring around the first second of the registered 
transients and lasted on average 5 s.  

The amplitude of the investigated signals was normalized and equalled 100 for each 
transient. Then the signals were compressed and reconstructed with the defined maximal 
compression artifacts of the range <1; 5> % (where 100% is signal amplitude). 

Table 1 shows compression ratios for defined maximal compression artifacts. 
 

Table 1. Compression ratios for defined maximal compression artifacts. 
signal event \ errors 5.0% 4.5% 4.0% 3.5% 3.0% 2.5% 2.0% 1.5% 1.0%
test_1 Impulse, Sags 116.1 78.2 63.8 66.5 39.9 33.0 29.0 27.5 11.4
test_2 Harmonics, Sags 72.5 73.0 63.6 62.0 59.1 51.0 48.9 25.7 10.1
test_3 Interruptions 32.9 30.9 27.9 24.4 22.7 19.2 16.2 13.8 10.3
test_4 Oscialltory, Sags 35.2 35.0 30.8 30.3 27.0 24.0 14.7 6.0 4.3
test_5 Harmonics 90.6 71.5 65.2 45.8 41.2 36.2 27.3 27.4 16.9
test_6 Oscialltory, Interruptions 30.5 27.7 25.3 19.9 18.1 16.6 14.9 11.6 7.7
test_7 Harmonics 86.5 95.1 80.0 70.5 62.6 50.7 33.8 29.1 14.7
test_8 Oscialltory, Sags 89.2 77.2 79.7 72.3 66.8 57.3 55.8 34.6 8.9
test_9 Oscialltory, Interruptions 30.5 27.7 25.3 23.1 18.1 16.6 14.9 11.6 7.7

test_10 Harmonics 90.6 71.5 65.2 45.8 41.2 36.2 26.8 24.0 16.9
mean of compression ratio 67.5 58.8 52.7 46.1 39.7 34.1 28.2 21.1 10.9  

 
Fig. 5 presents compression ratio dependence on the defined maximum compression artifacts 
for all tested signal (Table 1). 

 
Fig. 5. The compression ratio depends on compression artifacts for all tested signal. 

 

 
Fig. 6. The compression ratio depends on compression artifacts. 



Figure 6 presents the distributions of mean values of the compression ratio for all tested 
signals. For higher accuracy of the signal projection, the compression ratio rapidly decreases 
giving the values comparable to the classical compression methods and the only benefit of the 
method is the information about harmonics of the signal. 

Increasing maximum compression artifact level to 2.5 %, gives much better compression 
ratio with still high accuracy of harmonics and transient oscillatory estimation, but the 
algorithm is less sensitive to new power quality events. 
 
 

4. RESULTS 
 

The distribution of errors which occurred after the reconstruction of the original signal in 
the time domain, is presented in Figs. 7 to 11. Grey rectangles show the parts of signals by 
means of which the Prony’s model was created and wavelet decomposition was calculated to 
find out the difference between the Prony’s model and the original signal. The number of 
estimations determines indirectly the compression ratio and accuracy of the signal projection. 

Figure 7 shows compression artifacts in the time domain with 1% maximum reconstruction 
error assumed. The number of generated models is in this case high (26 models for a 5 second 
signal). 
 

 
 

Fig. 7. Signal: test_7 - Decompression results. Reconstructed signal (top) and total compression 
artifacts (bottom). The maximum compression artifact level is set to 1 %.  

 
Fig. 8 presents decompression results where the maximum reconstruction errors are set to 

2.5%. In this case for the same test signal (test_7) compression algorithm gives less number 
of generated signal models. This fact causes compression ratio to increase from 14.7 to 50.7. 
The accuracy of each signal model is the same as in the case when 1% reconstruction error 
was set, which is shown in Fig. 6 and Fig. 7 (bottom part of figures – grey rectangles). In the 
described case however, another phenomenon is visible. 

The error between subsequent estimations gradually increases. It is well visible between 2 
and 3.5 second for Fig. 8 and while assuming even bigger error. In Fig. 9 simulation for 5 % 
error has been shown. The described phenomenon might be caused by an original signal that 
probably changes gradually or, more likely, by some inaccuracy of reconstructed samples 
estimation. 
 



 
 

Fig. 8. Signal: test_7 – Decompression results. Reconstructed signal (top) and total compression 
artifacts (bottom). The maximum compression artifact level is set to 2.5 %.  

 
With 5 % maximum reconstruction error, compressing signal: test_7 gives only 8 models 

(Fig. 9) and automatically the compression factor increases and equals 86.5. 
  

 
 

Fig. 9. Signal: test_7 – Decompression results. Reconstructed signal (top) and total compression 
 artifacts (bottom). The maximum compression artifact level is set to 5 %.  

 
New model estimation is caused not only by gradual change of original signal parameters 

or inaccuracy in samples computations, but also by sudden signal change like impulsive 
transient. The moment the change appears is beginning of the part of the signal which 
undergoes Prony’s analysis due to which parameters estimation for events like oscillatory 
transient (including the damping factor), can be done more accurately. 

Described procedure is important and results from some disadvantages of the Prony’s 
model. It does not position estimated parts in time and does not average those occurring with 
some offset in the analysed part of the signal. 

Impulsive transient events that might happen in the original signal (Fig. 10 – about 2.2 
seconds), are not analyzed well by the Prony's model and their compression is possible due to 



the wavelet decomposition of the part of signal undergoing Prony’s modelling. Similarly, in 
the case of many oscillatory transcient events with different offset, the Prony’s model may not 
give a full model of the signal, so wavelet compression is recommended. Described 
phenomenon is shown in Figures 10 and 11. 
 

 
 

Fig. 10. Signal: test_9 – Decompression results. Reconstructed signal (top) and total compression  
artifacts (bottom). The maximum compression artifact level is set to 2.5 %. 

 

 
 

Fig. 11. Signal: test_8 – Decompression results. Reconstructed signal (top) and total compression 
artifacts (bottom). The maximum compression artifact level is set to 5 %. 

 
Table 2 presents Prony's models for signal: test_7, where the maximum compression 

artifact level is set to 1 %. It shows that all parameters of models give high accuracy of the 
estimated harmonic components: amplitudes, frequencies, phase, and dumping factor. 
Parameters of the Prony's method are the part of the compressed power waveform and enable 
for power quality analysis. 
 

Table 2. Estimation of parameters of the Prony's model for signal test_7. The maximum compression artifact 
level is set to 1 %. 



[ms] [ ] [Hz] degree [1/s] [ms] [ ] [Hz] degree [1/s]
1 0.00 96.23 49.99 -71.97 0.01 11 1486.00 96.78 49.99 29.26 0.00

1.54 250.06 60.78 -1.32 1.63 249.96 -154.73 -0.29 
0.85 350.26 -117.32 0.47 0.77 350.02 -133.03 2.12

2 139.50 96.24 49.99 -81.57 0.00 12 1756.75 96.74 49.99 -138.37 -0.01 
1.48 250.02 13.76 -0.30 1.54 249.96 86.98 1.23
0.85 349.82 -179.99 0.71 0.82 350.65 127.62 0.60

3 321.00 96.40 49.98 -55.25 -0.02 13 1922.00 96.71 49.99 -44.52 0.00
1.14 254.50 89.48 2.74 1.72 249.90 -162.52 -1.57 
0.93 352.40 -25.19 -0.77 0.82 350.44 67.73 0.92

4 449.00 96.18 49.99 88.07 0.02 14 2107.75 96.72 49.99 58.05 -0.02 
1.43 249.90 143.00 0.62 1.59 250.10 -13.12 0.26
0.89 349.60 -70.48 -0.11 0.85 350.31 66.86 -0.71 

5 638.25 96.30 49.99 -106.29 -0.02 15 2261.00 96.62 49.99 -64.21 0.00
1.46 249.87 -109.08 -0.19 1.61 250.09 96.77 -0.23 
0.95 350.01 4.98 -1.97 0.88 350.44 -69.72 -0.95 

6 766.25 102.08 50.02 37.23 -1.57 16 2406.50 96.59 49.99 34.14 -0.01 
1.36 357.93 -156.48 -12.96 1.57 249.88 -130.26 0.48

7 894.25 96.41 49.97 -178.20 0.03 0.81 349.72 -94.42 1.20
1.66 249.90 -113.23 -0.62 17 2642.75 96.52 49.99 -34.20 0.00
0.88 349.85 -146.18 -0.24 1.61 250.00 -112.34 0.02

8 1030.25 96.96 49.98 108.75 -0.03 0.85 349.89 145.88 -0.28 
1.67 253.34 -155.56 -3.93 18 2909.50 96.51 49.99 86.20 0.01

9 1159.25 97.03 49.98 -90.26 -0.02 1.57 249.92 130.31 0.17
1.65 249.92 -31.14 -0.73 0.84 350.08 -95.75 -0.03 
0.84 349.91 110.00 0.15 19 3042.75 96.54 49.99 -35.96 0.00

10 1350.50 96.91 49.98 111.01 -0.01 1.62 249.88 -119.73 -0.09 
1.68 250.23 -108.22 -1.26 0.82 348.92 142.95 -0.02 
0.89 350.62 73.27 -1.39 

no. no. damping 
factortime amplitude frequency phasedamping 

factortime amplitude frequency phase

 
 

 
 

Fig. 12 Estimated basic harmonic frequency for subsequent signal model. Results  
for signal test_7, where the maximum compression artifact level is set to 1 %. 



 
 

Fig. 13 Estimated basic harmonic amplitude for subsequent signal model. Results  
for signal test_7, where the maximum compression artifact level is set to 1 %.  

 
Figure 12 presents dispersion of the estimated frequency parameter of the Prony's model 

for basic harmonics (50 Hz). Figure 13 presents dispersion of the basic harmonic amplitude. 
Accuracy  of frequency estimation determines the increase of estimation frequency. 
 
 

5. CONCLUSION 
 

The described compression method enables obtaining high compression factor for power 
waveform with low compression artifact level. Compressed data can give valuable 
information about harmonics and other oscillatory parts of the signal, which can facilitate the 
analysis of the registered events. 

Estimated basic signal parameters are computed with high accuracy in comparison to 
popular method of signal analysis like for instance fast Fourier transformation. 

Presented method however requires fast computations which can limit applications in 
portable power quality monitoring systems. Yet the described algorithm may be used in 
power waveform bases to compress signals. 

The method will be improved to decrease the time of compressed signal computations and 
to increase the compression factor as well. 
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KOMPRESJA DANYCH Z ZASTOSOWANIEM METODY PRONY’EGO I TRANSFORMACJI FALKOWEJ 
W SYSTEMACH MONITOROWANIA JAKOŚCI SYSTEMÓW ENERGETYCZNYCH 

 
Streszczenie  

 
Artykuł opisuje metodę kompresji sygnału elektroenergetycznego rejestrowanego w celu analizy jakości 

energii. Opisany algorytm umożliwia uzyskanie wysokiego współczynnika kompresji sygnału przy zachowaniu 
dużej dokładności rekonstrukcji oryginału. Algorytm wykorzystuje zmodyfikowaną metodę Pronego analizy 
sygnałów w celu wyznaczenia podstawowego modelu sygnału oraz dodatkowo dla zmniejszenia błędów 
rekonstrukcji stosuje także dyskretną analizę falkową. Połączenie tych metod umożliwia efektywną kompresję 
rzeczywistych sygnałów z urządzeń pomiarowych oraz dodatkowo realizuje analizę składowych harmonicznych 
i zdarzeń o charakterze oscylacyjnym przebiegów, co może ułatwić późniejszą analizę zjawisk zachodzących w 
monitorowanych obiektach. Artykuł zawiera analizę przykładowych rzeczywistych sygnałów z systemu 
monitorującego, pokazuje analizę wydajności algorytmu dla różnych założonych błędów kompresji oraz opisuje 
błędy generowane przez metodę.  
 


