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QUANTUM HALL EFFECT: THE FUNDAMENTALS 
 
 

The basic understanding of the physics behind and the reasons for very high precision of the resistivity ρxy 
quantisation in integer quantum Hall effect (IQHE) and the application of the effect in metrology to define a 
quantum resistance standard will be briefly discussed. We also mention some recent proposals concerning the 
application of the quantum Hall device as an efficient qubit for future quantum computers and end up with few 
remarks about the contribution of single electron devices to the realisation of standards and quantum metrology 
which seeks the ways to beat the accuracy of classic measurements. 
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1. INTRODUCTION: FROM EDWIN HERBERT HALL TO KLAUS VON KLITZING 
 

Electrons in bulk system can move freely in all three dimensions and often can be treated 
as free quantum quasi-particles1. This is no longer the case in modern structures in which their 
motion is restricted to two dimensions (2D i.e. a plane), one dimension (1D - the quantum 
wire) or even zero dimensions (0D - quantum dot). In such structures the electrons display 
very unusual behaviour. New quantum liquids with properties much different from the well 
known Fermi liquid are possible. These include variety of quantum Hall liquids and 
composite fermion states in 2D, Luttinger liquid in 1D, etc. The charge of elementary 
excitations may amount to the fraction of electron charge and their statistical properties may 
dramatically differ from that of bosons and fermions in three dimensional systems [1].  

In this work we shall concentrate on the magnetotransport phenomena observed in 2D 
electron gas. Let us start the discussion with a three dimensional system in the form of a thin 
conducting metallic or semiconducting slab. As it is well known the application of a magnetic 
field perpendicular to the surface of such a system along which the current flows produces a 
voltage VH across the sample transverse to the current flow (see Fig. 1 for a typical setup). 
The effect has first been observed in 1879 by the graduate student of John Hopkins 
University, Edwin Hall2 [2]. The appearance of voltage, VH is known as the Hall effect. It is 
due to the Lorentz force acting on charges moving in the presence of the magnetic field. In the 
equilibrium the magnetic part qvDB of the Lorentz force FL is balanced by the electric one 
qEx = qVH/Ly, so VH/Ly = vDB. Here vD is the average drift velocity of carriers, q – their charge 
and Ly – width of the sample. Noting that the current Ix can be expressed as the product of the 
drift velocity vD, charge density n, and the cross sectional area of the sample S = Lyw (where w 
is the thickness of the slab) we find the perpendicular resistivity Ryx = VH/Ix to be 

 

                                                 
1 The term quasi-particle is used to denote the particle which properties i.e. effective mass differ from the original particle. 
For example the effective mass m_ of an electron in GaAs heterostructure is about 0.07 electron mass me. 
2 Edwin Herbert Hall born November 7, 1855, Great Falls (later North Gorham), Maine, U.S.A died November 20, 1938, 
Cambridge, Mass. U.S.A. 



 
S

yx qN
B

qnw
BR == , (1) 

 
where n is the number of carriers per unit volume. Note, that nw is the number of carriers per 
surface area, to be denoted NS. 

The measurement of the Hall resistance (or Hall constant RH = Ryx/B) gives information 
about the density NS and the sign (q = ±e) of charge carriers in metals and semiconductors. 
The effect became a standard tool of material characterisation. The direct proportionality of 
the Hall resistivity to the local magnetic field B is used to measure the magnetic field and its 
distribution [3]. 
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Fig. 1. The standard geometry used in the studies of the Hall effect in 3 dimensional samples and quantum Hall 
effects in 2 dimensional electron (or hole) gas. 

 
All this concerns three dimensional samples. What about the two dimensional systems? At 

first sight nothing special can be inferred from Eq. (1). So it came about as a big surprise, 
when Klaus von Klitzing’s3 and his colleagues’ [4] measurements completely analogous to 
those in the classic Hall effect albeit performed on a two dimensional electron gas have shown 
strong departures from the expected behaviour. To be more precise: the low temperature 
measurements [4] of Hall resistance on the high mobility two-dimensional electron gas in a 
strong magnetic field have revealed highly nonlinear behaviour of Ryx(B) for fields high 
enough. It manifests itself as a series of plateaus. In the original 1980 measurements a Si 
MOSFET device has been used in which the plateaus as a function of carrier density have 
been observed. In a semiconductor heterostructure in which carrier concentration is kept 
constant the plateaus, extending over a range of magnetic fields are observed. To a very high 
accuracy and independently of the material details one measures on the plateau 
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where h is Planck’s constant, e – electron charge and v is a number. 

In the rest of the paper I will shortly discuss some reasons behind the high precision of 
resistance quantisation, theoretical understanding and universality of the effect (section 2), the 
application of IQHE as a resistance standard and recent proposals to use both IQHE and 
                                                 
3 Klaus von Klitzing was born 28th June 1943 in Środa near Poznań. 



fractional QHE as working quantum information processors (section 3). I end up with some 
comments on the general issues connected with quantum metrology. 
 
 

2. THE QUANTUM HALL EFFECT 
 

When discussing quantum Hall effects one has to distinguish integer QHE (IQHE) when v 
in Eq. (2) is an integer 1, 2, 3 ... and fractional QHE when the measured Hall resistance 
corresponds to v = p/q and p and q are relatively prime integers. The appearance of the plateau 
in Ryx is in both cases accompanied by the vanishment (at low enough temperatures) of the 
longitudinal resistance Rxx = Ix/Vx, where Vx is the voltage drop along the sample. Even though 
the experimental manifestations of both effects is to high extent the same, the physics behind 
them is very different. We shall not discuss the theories of fractional QHE here as it is beyond 
the scope of this presentation. 

 

 
 

Fig. 2. The low temperature measurements of magnetotransport on the very high mobility 2DEG showing 
multitude of integer quantum Hall steps [6] (upper part) and the oscillations of the longitudinal resistance (lower 

part). 
 

Figure (2) shows a series of well developed plateaus in the Hall resistance of the two 
dimensional electron gas formed in the high mobility GaAs/AlGaAs heterostructure. In the 
original paper [4] a relative accuracy 10−5 of quantisation was observed. At present the 
absolute precision of quantisation of Ryx is a few parts in 108 or better and the agreement 
between measurements on a different devices is few parts in 1010. As a result the Hall 
resistance has been adopted as an international standard of resistance [5].  

To understand the very possibility of the high precision of measurements it is important to 
realise that in two dimensions the Hall resistance Ryx and Hall resistivity ρyx coincide (notation 
as in Fig. (1)) 
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This means that single and potentially very accurate ”electric measurement” of Ryx suffices for 
the determination of resistivity ρyx. To get the information on the other component of the 
tensor i.e. the longitudinal resistivity ρxx both the knowledge of Rxx and sample dimensions Lx, 
Ly are necessary as Rxx = Vx/Ix = ExLx/jxLy = ρxxLx/Ly. The measurements of Lx and Ly, however, 
are never very precise. Note, in two dimensions the resistance and resistivity are expressed in 
the same units, namely ohms. 

In connection with the above statements recall that also the vanishment of the longitudinal 
resistance is very accurate. The value of it measured in the Hall plateau region is lower than in 
any non–superconducting material. Before we start with theoretical explanation of the IQHE 
we have to note another aspect connected with the precision of quantisation. Assuming typical 
electron concentration in 2DEG of the order of 2×1011 cm−2 and typical dimensions of the 
sample 260 µm × 400 µm [6] we find the number of electrons in a two dimensional channel 
N ≈ 2×108. Thus the precision of quantisation is of order 1/N instead of expected, on statistical 
grounds, much lower precision 1/ 410−≈N connected with fluctuations of physical 
parameters in the many body system. These measurements thus provide an example of 
quantum measurements which beat the shot noise precision 1/ N (see discussion in section 
3).  

This fact poses a severe constraint on the acceptable theoretical explanation of the effect 
(which should not make use of, our favourite, statistical methods). There is a number of 
theoretical proposals to understand the independence of the result on material properties, 
geometry of the sample and other real life disturbances. The most general one has been 
proposed by Laughlin [7] and makes use of the gauge freedom. Other approaches invoke the 
scattering theory in impure 2D electron gas subject to a perpendicular magnetic field, edge 
states [8], etc. There exists a vast original literature on the subject [9, 10, 11], and a number of 
books [12].  

As the simplest way of presenting the main ideas let us start with free 2D electrons with 
effective mass m* and the spectrum E(kx, ky) = (ħ2/2m*)( 2

xk + 2
yk ). Under the action of a 

magnetic field the spectrum becomes completely quantized in highly degenerate Landau 
levels of energy En = (n+1/2)ħωc, where ωc = eB/m* is the cyclotron energy. The degeneracy g 
of each of the levels n = 0, 1, 2 ..., can be calculated as the number of non penetrating 
cyclotron orbits allowed in a sample of surface S, g = S/2π l2 = φ /φ0, where l = eB/h  is the 
magnetic length, φ the magnetic flux and φ0 = h/e is the flux quantum. In GaAs based 
heterostructure and a field of about 10 T the magnetic length l ≈ 8 nm, while the cyclotron 
energy is of the order of meV . The surface density of electrons entering the Eq. (1) is 
obtained by multiplying the degeneracy per area (= eB/h) with the number ν of Landau levels 
below the Fermi level: NS = νeB/h. If this is plaggued in into (1) with q = e one gets 
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in numerical agreement with observation, but a completely wrong result. It merely says that 
for some precisely determined value of the magnetic field the value of the Hall resistance 
equals to the value given by the rhs. of the above equation. This does not explain neither the 
existence of the plateau for a range of magnetic fields nor the concommittal vanishing of the 



longitudinal resistance. In one way of thinking about the problem it is impurities which 
explain the physics behind the quantisation. In presence of impurities some of states become 
localised with energies lying in between Landau levels (see Fig. (3)). If the Fermi level lies in 
the region of localised states the current does not flow and the longitudinal resistance 
vanishes. An increase of the magnetic field increases the degeneracy and moves the Fermi 
level towards a lower level. Each time it crosses the Landau level with extended states the 
longitudinal resistivity is nonzero and perpendicular one jumps from one plateau to the next. 
The question arises. If some states get localised so why is current is the same (to give a 
plateau at constant voltage). The answer is provided by the compensation theorem (see [8] 
and references cited there) which can be proved on general grounds. In the system at hand it 
states that if some states get localised the rest of them carry more current just to compensate 
for those which cannot. This explains the effect of appearance of flat plateaus in Ryx and 
vanishing of Rxx in spite of (or in fact, rather, thanks to) impurities. 
  

 
Fig. 3. Schematic dependence of the density of states on the energy for a two-dimensional electron gas subject to 

strong perpendicular magnetic field in the presence of impurities. Shaded regions indicate localised states. 
Presumably the regions of extended states are limited to the Landau level energies only (dashed lines). 

 
 

3. APPLICATIONS 
 

Here we recall the applications of the QHE in metrology as (i) a resistance standard and (ii) 
for precise measurements of fine structure constant and briefly describe recent proposals to 
use it in building quantum gates. 
 

3.1.  α and Ω 
 

The possible application of the QHE as a resistance standard has first been recognised by 
Klaus von Klitzing [6]. At present the effect is used in many metrology/ standard laboratories 
all over the world to reproduce, calibrate and maintain the unit of resistance. The value of 
resistance corresponding to ν = 4 in Eq. (2) has been adopted for use in laboratories starting 
on 1st January 1990. The quantum of resistance h/e2

 has been called the von Klitzing constant 
denoted by RK and its value (as known in 1988, RK−90) defined to be 
 



 Ω=≡− 807.25812290 e
hRK . (5) 

 
In this context and in connection with recent proposals to simultaneously use the QHE and 

the Josephson effects in maintaining an indirect standard of ampere [13] it is worthwhile to 
recall the adopted value of the Josephson constant 
 

 9.4835972
90 =≡− h

eK j GHz / V. (6) 

 
If successful, the realisation of the ampere would open a road to define a quantum standard 

of the mass: the kilogramme. To be precise the realisation of this proposal would require very 
precise measurement of the quantum resistance via QHE at the frequency of about 1 kHz, 
usually used in metrological experiments. The point of concern is connected with the 
localised states lying in-between the Landau levels. For DC current they do not contribute to 
dissipative transport. This is no more true for time dependent circuits. Theoretical estimations 
show that the departures from the quantised values at the plateaus grow with frequency ω as 
ω0.5

 and restrict the accuracy of measurements to about few ppm at 1 kHz.  
It has to be stressed that the adopted values of the constants (5) and (6) do not mean that 

the values of Planck’s constant h and elementary charge e are defined. Both h and e are 
constant of Nature, cannot be defined and are subject to precise determination by already 
known and new emerging methods. It is the value of the Hall resistance at ν = 1 which has 
been defined for the purpose of international inter laboratory comparisons. Moreover the 
quantum Hall resistance is much more stable than any standard wire resistance. In metrology 
laboratories one needs the value of 1, so a number of additional steps have to be performed to 
scale down the QHE resistance to this value, but these issues are outside the present 
discussion. 

The Sommerfeld fine structure constant α is defined as α−1 = (2/µ0c)(h/e2) with c denoting 
the velocity of light and µ0 the vacuum permeability. In SI both these constants are defined, so 
QHE directly measures the fine-structure constant. This aspect of QHE has been underlined 
already in the title New Method for High-Accuracy Determination of the Fine-Structure 
Constant Based on Quantized Hall Resistance of the first publication announcing the 
discovery of QHE [4]. Again the defined value of RK−90 does not imply that α has been 
defined. 
 

3.2. From classical to quantum PC 
 

The devices used to study the two dimensional electron gas, namely the silicon metal-
oxide-semiconductor field-effect-transistors (Si-MOSFET) and GaAs-AlGaAs 
heterostructures are standard building blocks of modern electronic instruments, in particular 
processors and other parts of computers. The two dimensional gas operating at room 
temperature does not show its full quantum nature as discussed above. As the classic 
computers are thought to be replaced by their quantum ascendants and one of the proposals is 
connected with QHE let us discuss some aspects of quantum information story.  

The classic processors use single bits 0 and 1 and classic Boolean logic to store and 
process information. The quantum computers instead will make use of the quantum 
mechanics law which says that the linear combination |q > of states, say |0 > and |1 > 
 
 |q >= α|0 > +β|1 >, (7) 



 
where α2 + β 2 = 1, is also a perfectly well allowed quantum state of the two state system. In 
quantum information theory such a state, which in a sense represents ”any state between |0 > 
and |1 >” is called a quantum bit or qubit. The elementary operations of qubits are called 
quantum gates. The number of quantum gates performing operations on qubits according to 
quantum logic form a quantum processor or computer. There is a number of problems to be 
solved before such a device could be built. They involve the questions of irreversible 
computations as the quantum mechanical evolution is unitary and thus reversible, the 
decoherence i.e. the leakage of quantum information from qubits due to their interaction with 
environment, the preparation of states, addressing individual qubits and reading off the 
answer when information processing is finished. These problems are to complicated to be 
discussed in detail here.  

Let us only say that it has been proposed to use arrays of nuclear spins [14] embedded in 
the two dimensional electron gas in the regime of QHE as efficient processors immune to fast 
decoherence [15]. This proposal relies on the weak nuclear spin relaxation processes at low 
temperatures. This is due to lack of dissipation in the electron gas in regime of the quantum 
Hall effect. The measured relaxation times were in the range of several minutes. The gap in 
the spectrum slows down relaxation and decoherence.  

Use of the special fractional QHE states as very efficient topologically protected qubits 
with estimated error rate for a logical NOT operation in the range 10−30 has been recently 
proposed [16]. The future will show whether any of these proposals could be realised. 
 
 

4. QUANTUM MEASUREMENTS AND METROLOGY 
 

The continuous trends to make electronic circuits smaller and smaller will soon reach the 
limits where quantum effects start to determine their functioning. There are two broad subject 
which should be mentioned in this context. On the one side submicron devices have been 
invented and studied in which a single electron can be registered. These so called single 
electron tunnelling structures (known as single 6 electron transistors, turnstiles and pumps) 
can be controlled in such a way that single electrons (or an integer number of them) can be 
transfered per operational cycle. They consist of the central island (dot) connected by the 
tunnel barriers to external electrodes. The spectrum of the small dot is quantised and its 
capacitance C is small. At low temperature the number of electrons on a dot is well defined, 
provided the coupling of it to the electrodes is weak enough. Addition of an extra electron to 
the island requires energy equal or bigger than the charging energy e2/2C. Otherwise the 
tunnelling of electrons is blocked. The conditions for such Coulomb blockade are: (i) 
suppression of thermal fluctuations, which means that the thermal energy has to be smaller 
than the charging energy and (ii) suppression of quantum fluctuation, which means that the 
tunnelling rate should be small or resistance R of the tunnel junction large: R≥h/e2.  

The circuit consisting of two islands in series connected to each other and external 
electrodes by tunnel barriers is known as a single electron pump. Each island can be tuned by 
the gate electrode. Under the right conditions an AC voltage applied between the gate 
electrodes will pump electrons between the source and drain leads. The resulting current I is 
directly related to the AC voltage frequency f via 
 
 I = ef. (8) 
 



Such pumped current has been measured experimentally with an accuracy of 1 ppm with the 
current in the range of nA. The device has recently been proposed as a potential current 
standard (see [17] and references cited there). 

Quantum mechanics imposes the fundamental limits on the precision of measurements of 
complementary observables, such as position and momentum, different components of 
angular momentum, etc. These Heisenberg uncertainty limits can never be beaten. In practice 
there are other less fundamental limits, like thermodynamic fluctuation limit or shot noise 
limit. It turns out that these limits can be beaten by using the carefully designed measurements 
strategies [18]. The theoretically predicted enhancement of precision for N identical probes 
(photons, electrons, etc.) scales as N and may thus reach the limit 1/N. The ways to achieve 
the increased accuracy is to make use of squeezed or entangled quantum mechanical states. 
These quantum effects allow the harnessing quantum mechanics in order to increase the 
precision. We call this process ”quantum metrology”. 
 
 

5 SUMMARY AND CONCLUSIONS 
 

Let us briefly summarise: the quantum Hall effect (QHE) manifests itself as a quantisation 
of the nondiagonal elements (ρxy) of the resistivity tensor accompanied by the simultaneous 
vanishing of diagonal elements ρxx of it for ranges of the magnetic field. For integer QHE 

ρxy = 2e
h
ν

, where h is the Planck’s constant, e charge of an electron and ν is an integer. There 

also exists a fractional quantum Hall effect for which ν is a simple fraction. It is observed at 
low temperatures and high magnetic fields in high mobility two dimensional electron gas. The 
very high accuracy of the quantisation lead to the application of the IQHE for the 
reproduction of the SI unit of the resistance - the ohm.  

The intensive work is being done to use the IQHE together with the Josephson effect to 
design a quantum standard of the Ampere and as a result to replace the very classic unit of 
mass - the kilogramme introduced in 1889 by a quantum one. 

The peculiar properties of the quantum Hall liquids make them attractive playground to 
propose highly speculative applications in quantum information processing. All this makes 
the old effect a very interesting subject of studies.  

Single-electron transistors and other quantum devices are slowly making their way to 
applications in precise metrology as current and capacitance standards. There is no doubt they 
will be very useful in new metrology applications and the progress in the field is to be 
expected in near future.  

The new quantum measurements protocols will allow to beat the shot noise limit 1/ N  
and obtain the ultimate quantum limit 1/N, already experimentally achieved in quantum Hall 
measurements (of an electron charge [7]).  
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KWANTOWE ZJAWISKO HALLA: PODSTAWY 
 

Streszczenie  
 

W pracy przedstawiono podstawy zjawiska i fizyczne powody pozwalające na precyzyjny pomiar oporności 
ρxy w warunkach całkowitego kwantowego zjawiska Halla. Omówiono zastosowanie zjawiska w metrologii jako 
wzorca oporności elektrycznej oraz propozycje zastosowania kwantowego zjawiska Halla do budowy qubitu - 
podstawowego elementu przyszłych komputerów kwantowych. Na zakończenie wykładu przedstawię kilka 
zagadnień związanych z zastosowaniem urządzeń jednoelektronowych w metrologii i tzw. metrologią 
kwantową, która w wykorzystaniu kwantowych praw szuka metod pomiaru z precyzją większą niż 1/ N . 
 


