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The paper presents an application of the genetic algorithm method for calibration of measurement systems 
intended for the measurement of dynamic signals. The process of calibration is based on the determination of the 
maximum value of a chosen error criterion. 

The solutions presented in the paper refer to the integral-square error if the magnitude and rate of change 
constraints are imposed simultaneously on the calibrating signal. The practical application of the presented 
algorithm has been illustrated on the example of sixth order low-pass system calibration. 
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1. INTRODUCTION 
 
The calibration process depends on the determination of the maximum error which can be 

generated by a calibrated system in reference to its standard. For a measurement system 
intended for static measurements the problem of calibration was worked out a long time ago. 
For a measurement system intended for the measurement of dynamic signals, usually 
undetermined, the question of calibration is considerably complicated owing to the fact that 
the determination of the maximum error requires knowledge of the input calibrating signal, 
which maximizes the chosen error criterion. In the literature [1, 2, 3] it was proved that the 
signals maximizing the integral square error always achieve one of the constraints imposed on 
it. If only magnitude A of the calibrating signal is constrained, the signal maximizing integral 
square error is always of the ‘bang-bang’ type, while in the case of two constraints relating to 
the magnitude A and the rate of change ϑ, the signal maximizing this criterion can be only of 
triangular or trapezoid shape with slopes resulting from the values of ϑ and A. 

For the integral square error and for the above constraints the analytic solution referring to 
the shape of the signal maximizing this criterion has not been found so far, because the space 
of possible solutions is infinite and of infinite dimension. 

The solution of the problem of maximum integral square error determination proposed in 
this paper is based on the application of the genetic algorithm method. This method 
guarantees that the result will be obtained in minimized calculation time which depends only 
on the assumed number of population as well as on the stop condition. 

The practical application of the genetic algorithm worked out is illustrated on an example 
of calibration of a low-pass sixth order system if two constraints are simultaneously imposed 
on the input signal. 
 
 

2. CALIBRATION OF A MEASUREMENT SYSTEM INTENDED FOR DYNAMIC 
MEASUREMENT 

 



Calibration of a measurement system based on determination of the maximum error 
implies that the following tasks are to be solved [1]: 
- Synthesis of the mathematical model of the calibrated system and its standard. 
- Choice of an error criterion. 
- Analysis of the constraints imposed on the calibration signal. 
- Analysis of the attainability of the signal maximizing the chosen error criterion. 
- Writing a computer program for determination of the maximum value of error. 

For linear systems the magnitude constraint of the input signal maximizing the output is 
obvious, irrespective of the assumed error criterion. For this constraint the signal maximizing 
criterion (1) is always of the ‘bang-bang” type [1, 2, 3]. However the ‘bang-bang’ signals are 
not matched to the dynamics of low-pass systems, since they can only transmit signals with a 
limited value of the rate of change. Therefore it is necessary to impose the second constraint, 
related to the signal rate of change ϑ.  Proper matching is obtained if the maximum rate of the 
input signal change is less or at most equal to the maximum rate of the step response of the 
system. 

Figure 1 presents the diagram of measurement system calibration by means of genetic 
algorithms if the magnitude and rate of change constraints are imposed simultaneously on the 
input signal ),(0 tu and the error criterion is: 
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where the set U is assumed to contain signals being measurable in the meaning of Lebesgue. 
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Fig. 1. Diagram of measurement system calibration by means of genetic algorithms. 

 
 i = 1… N,   N = np nch ⋅ , (2) 
 
where: nch - number of chromosomes in population, np - number of generated populations for 
which the stop condition is carried out. 



The mathematical model of the calibrated measurement system is obtained as a result of 
parametric identification, however the mathematical model of its standard is usually attained 
in the context of realization of no-distortion transformation [12, 14].  
A genetic algorithm generates one by one the switching vectors describing the ui(t) signal, for 
which outputs (3), error (4) and functional (1) are determined. 
 

 ypi(t) = ( ) ( ) τττ dutk i

t

pi  
0

−∫ , (3) 

 

 ywi(t) = ( ) ( ) τττ dutk i

t

wi  
0

−∫ , (4) 

 
 ( )tiε = ( )−ty pi ( )tywi . (5) 
 
In every iterative cycle, the ( )uIi  value is compared with the ( )uIh value stored in memory, 
which for i = 1 has the initial value equal zero. If ( )uIi  > ( )uI h , then ( )uIi  is ascribed to 

( )uI h  and then stored. Simultaneously with this operation the vector of signal iu (t) values is 
saved in memory. 
For i = N stored in memory the values iu (t) and ( )uI h are ascribed to the pair of ( )tu0  and 

( )uI max . In this manner the solution for i = N consists of two data: the vector of data which 
describes signal ( )tu0  and the corresponding signal value of functional Imax(u) = ( )0uI . 
 
 

3. APPLICATION OF GENETIC ALGORITHM TO CALIBRATION OF A 
MEASUREMENT SYSTEM 

 
 

In order to determine signal u0(t) it is necessary to search a set of permissible input signals 
iu (t) [1, 2, 5]. If we give up the requirement of solution optimality and its approximate value 

yields a satisfying result, then the genetic algorithm technique can be applied as a searching 
method.  
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Fig. 2. Genetic algorithm block diagram. 

 
Figure 2 presents a genetic algorithm block diagram. According to genetic algorithm 
specificity [7, 8, 9], the determination of the unknown u0(t) signal is performed in three steps: 
- operation of reproduction, 
- operation of crossing, 
- operation of mutation. 

In the first step, the initial population composed of an even chromosome number is 
selected at random. Each chromosome consists of detectors the number of which corresponds 
to the interval between switching times of iu (t) [5]. For each chromosome the value of 
functional (1) is determined (Table 1), and then on the basis of the obtained results, following 
formulae (6) and (7), an adaptation coefficient is calculated. 

This coefficient presents each chromosome percentage share in the total error  [5]: 
 

Table 1. Chromosomes population and adaptation index for each chromosome. 

detectors Chromosome: 1 2 . . . m 
Adaptation 
coefficient 

p1 t11 t12 . . . t1m I21 

p2 t21 t22 . . . t2m I22 
. . . . . . . . . . . . . . . . . . 

pn tn1 tn2 . . . tn m I2n 
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where: I2s is the total error, and I21’... I2n’ present the share of individual adaptation 
coefficients in the total error.  

Knowledge of adaptation coefficients is necessary for each chromosome in order to 
estimate their usefulness in population. In the case when the difference between the obtained 
values of adaptation coefficients is too small it is necessary to carry out the operation of 
adaptation coefficient scaling, because the next steps of genetic algorithm would not give 
desirable effects [8, 9].  

In the next step the operation of reproduction is carried out, and according to the 
probability calculated on the basis on (2) from the initial population the chromosomes are 
selected at random. Depending on the value of the adaptation coefficient a particular 
chromosome has a larger or smaller chance to be found in the next generation. There are 
several ways of calculating the chances for each chromosome [8, 10]. 

The most common way is represented by the roulette wheel method, where the process of 
random selection is carried out as many times as the number of chromosomes in the 
population, and the results of random selection are rewritten to the new descendant 
population. 

All chromosomes have different random selection probability, proportional to the value of 
the adaptation coefficient. As a result of the reproduction operation a new population 
composed of chromosomes: p1’...pn’ is obtained. 

The next step is the crossing process. Chromosomes of p1’...pn’ are joined in pairs in a 
random way and for the given crossing probability Pk a number from the range [0,1] is 
selected at random. If the selected number is in the range [0,Pk], then the crossing process is 
performed. 

Otherwise the equivalent detectors of joined chromosomes are not crossed. The crossing 
probability Pk is usually established on a high level, which is about 0.9. 
The crossing process is carried out according to the formula [7, 11, 13]: 
1. In the case of crossing detectors t11 from the first chromosome and t21 from the second 
chromosome we have: 

t11’= (1-α) t11 +t21, 
 (8) 

t21’= α t11 + (1-α) t21, 
where: t11’ is a descendant detector of the first chromosome, and t21’ is a descendant detector 
of the second chromosome. 
Coefficient  α  is selected according to the following procedure. 
In the first step: 
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are calculated 
where: 1α  and 2α  present the minimum and maximum limit of α coefficient changeability  
for the detector from the first chromosome, and 3α , 4α  present the minimum and maximum 
limit of α coefficient changeability for the detector from the second chromosome. The 
changeability range of α  is contained in the range between zero and the third value of 1−maxα  
coefficient (9) minus 1−maxα  multiplied by the changeability step of t from interval [0, T]. 



In the next step the α value is selected at random from the above range and then this value 
is substituted into formula (8). 
2. In the case of crossing detectors: t1m from the first chromosome and t2m from the second 
chromosome we have: 
 
 t1m

’ = (1-α)t1m + α.t2m,    t2m
’ = α.t1m + (1-α)t2m, (10) 

 
where: m = 2 … n, t1m’ is the first chromosome descendant m detector and t2m’ is the second 
chromosome descendant m detector. Coefficient α is selected following the procedure. 
First: 
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are calculated, where: 1α  and 2α  present the minimum and maximum limit of α coefficient 
changeability  for the detector from the first chromosome, and 3α , 4α  present the minimum 
and maximum limit of α coefficient changeability for the detector from the second 
chromosome. The changeability range of α is contained in the range between zero and the 
third value of 1−maxα  coefficient (11) minus 1−maxα  multiplied by the changeability step of t 
from interval [0, T]. 
In the next step the α value is selected at random from the range determined above and then 
this value is substituted to (10) formula. 
The operation of crossing is presented in Fig. 3. 
 

 
 

Fig.3. Operation of crossing. 
 

The crossing procedure described by formulae (8-11) assures that in the descendant 
chromosomes the subsequent detectors will possess a value larger than the value of the 
detectors situated immediately before them. This requirement must be met, because individual 
detectors included in the chromosome contain the interval of switching times of the signal 

iu (t). 
The operation of mutation is the last step of the genetic algorithm. In case of each detector 

included in the descendant chromosomes, we ask whether the mutation operation will be 
carried out or not. This process usually is carried out at small probability (Pm < 0.1). Mutation 
is a sort of supplement to the operation of crossing. There are many varieties of mutation and 
the choice of a relevant mutation depends on the algorithm application. The linear mutation 
described by formula (12) is often applied [7, 8, 11, 13]: 

 



 d1m
’’ = (d1m+1

’-d1m-1
’) α + d1m-1

’,   α ∈ 〈0, 1〉,  m ∈ 1 ... n.  (12) 
 
The operation of mutation is presented in Fig. 4. 
 

 
 

Fig. 4. Operation of mutation. 

 
After the operation of mutation, the genetic algorithm process starts to recur. The 

populations number of the genetic algorithm searching the u(t) signals space of possible 
solutions should be as large as possible. It must be taken into consideration that the increasing 
number of population increases the time of genetic algorithm calculation. This time might be 
reduced many times, if the stop condition is applied [7, 8, 9]. This condition stops the 
algorithm if the value of )(uI h  stored in memory does not change.  
 
 

4. RESULTS OF RESEARCH 
 

As an example let us consider a low-pass system, described by the following equation: 
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and let its standard be: 
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Equation (14) represents a model of the standard, which was determined on the basis of the 
optimized procedure presented in [12], in the context of realization of no-distortion 
transformation. 

In order to determine signal )(0 tu  maximizing functional (1), if two constraints are 
imposed on this signal, the procedure described in Points 2 and 3 was applied. The magnitude 
A = 1 was assumed and the rate of change ϑ  = 0.418 was calculated as a maximum of the 
impulse response k(t) of the system (13). 



Figure 5 presents the impulse response k(t) as well as u0(t) and the error ε (t) corresponding 
to it. 
 

 
 

Fig. 5. Impulse response of k(t) and signals u0(t) and )(tε . 
 

The signal u0(t) is in the form (15) and it generates the maximum value of the error equal 
I(u) = 10.91 V2⋅s. 

 
u0 ⇒ ϑ+[0.0, 1.76s.], ϑ−[1.76, 5,92s.], -1[5.92 6.32s.], 

(15) 
ϑ+[6.32, 11.12s.], +1[11.12, 13.22s.], ϑ−[13.22, 15.0s.]. 

 
In (15) the following notation is used [2, 3]: ϑ+  signal increasing in the interval, ϑ−  signal 
decreasing in the interval, ±1 a constant signal in the interval. 
 
 

5. CONCLUSION 
 

The paper presents an application of a genetic algorithm for the calibration of a 
measurement system intended for dynamic measurements. In the process of calibration the 
maximum error (1) has been determined. 

The research was conducted by means of a computer program implemented in C language, 
with reference to a low-pass sixth order system. The mathematical model of the sixth order 
system was applied as standard. 

The shape of the signal with two constraints imposed on it, maximizing error (1), was 
determined by means of the genetic algorithm technique. 

The following parameters of the genetic algorithm have been assumed: number of 
population = 1000, stop condition = 100, number of chromosome included in each population 
= 32, crossing probability: Pk = 0.9, mutation probability: Pm = 0.07, step of calculation = 
0.01s. 
  The best result was obtained for 712 population, computing time was: 6 hrs, 32mins. 

Research was conducted by means of a 1 GHz PC. 
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ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WZORCOWANIA SYSTEMÓW 
POMIAROWYCH PRZEZNACZONYCH DO POMIARÓW DYNAMICZNYCH 

 
Streszczenie  

 
Artykuł przedstawia zastosowanie algorytmu genetycznego do wzorcowania aparatury pomiarowej 

przeznaczonej do pomiarów dynamicznych, w oparciu o wartości maksymalne błędów, jakie może generować 
rozpatrywana aparatura pomiarowa w odniesieniu do jej wzorca.  

Badania przeprowadzono w odniesieniu do całkowo-kwadratowego funkcjonału błędu, rozpatrując sygnały 
wejściowe ograniczone zarówno w amplitudzie jak i prędkości narastania, gdyż jedynie dla takich sygnałów 
można uzyskać wartości maksymalne rozpatrywanego funkcjonału. Z uwagi na fakt, iż dla całkowo-
kwadratowego kryterium błędu nie można w sposób analityczny określić kształtu sygnału maksymalizującego to 
kryterium, uzasadnione jest zastosowanie techniki algorytmu genetycznego jako narzędzia przeszukującego 
przestrzeń możliwych rozwiązań sygnałów wejściowych. 

Badania przeprowadzono w oparciu o program komputerowy zaimplementowany w języku C, w odniesieniu 
do dolnoprzepustowej aparatury szóstego rzędu. Jako wzorzec zastosowano matematyczny model układu 
szóstego rzędu, który został wyznaczony w oparciu o procedurę optymalizacyjną przedstawioną w [12], w 
kontekście realizacji przez ten model transformacji niezniekształcającej. 

Działanie algorytmu genetycznego oparto o metodę koła ruletki, z klasycznym sposobem budowania 
chromosomów, przy zastosowaniu kodowania opartego na liczbach rzeczywistych dodatnich. W procesie 
generowania kolejnych populacji wykorzystano operacje: reprodukcji, krzyżowania oraz mutacji. Przyjęto 
następujące parametry algorytmu genetycznego: liczba założonych do przeszukania populacji 1000, wartość 
warunku stopu = 100, liczebność chromosomów wchodzących w skład każdej populacji 32, 
prawdopodobieństwo krzyżowania: Pk = 0.9, prawdopodobieństwo mutacji: Pm = 0.07, krok dyskretyzacji 
obliczeń 0.01s. 
 


