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USING NEURAL NETWORKS FOR ERROR SUPPRESSION IN NONLINEAR 
SYSTEMS WITH HYSTERESIS

Some  shortcomings  of  nonlinear  systems  with  hysteresis  are  relatively  big  errors,  e.g.  linearity  error, 
hysteresis error, etc. The paper deals with possible improvements in the methods of error suppression by using 
neural networks. Another aim of the paper is evaluation of measurement uncertainty. It reviews the procedures 
currently applied for measurement uncertainty calculation according to ISO Guide.
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1. INTRODUCTION

Many systems in  engineering industry are  nonlinear  and show hysteresis  behavior.  An 
elastomagnetic sensor is exactly the type of nonlinear system with hysteresis. It is based on 
the  elastomagnetic  phenomenon,  i.e.  a  change  of  mechanical  stress  causes  a  change  of 
magnetic properties of the ferromagnetic sensor core and it corresponds with a change of the 
output sensor voltage. The sensor is connected like a transformer (see Fig. 1). The sensor core 
is made of 50 steel sheets; the number of primary turns is 10 and number of secondary turns is 
8. These parallel windings are placed in four cross-holes. A more detailed description of the 
sensor is in [10]. 

The change of magnetic properties of steel under the influence of a mechanical load [5] is 
analogous  to  the  electric  resistance  of  conductors  used  in  strain  gauges.  The  magnetic 
characteristics of amplitude permeability and incremental permeability in a properly chosen 
working  point  are  about  100  times  more  stress-sensitive  than  these  electrical  resistance 
effects. The relative change of the steel magnetic incremental permeability is up to 10-3/MPa, 
whereas  the  relative  change  of  a  strain  gauge  electric  resistance  is  about  10-5/MPa.  The 
elastomagnetic method, therefore, enables the measurement of stress changes under 1MPa 
without problem in a noisy industrial environment and over a wide temperature range, also in 
cases  when  the  use  of  other  methods  is  impossible  [9].  Shortcomings  of  elastomagnetic 
sensors are: ambiguity of transfer characteristic and sensor errors, e.g. linearity and hysteresis 
errors [12].

At present, the requirements for accuracy and reliability of sensor measuring systems are 
getting higher. The total accuracy of the measuring system can be significantly improved by 
adding a data conditioning block which can be represented by a neural network.



a) b)

Fig. 1. Elastomagnetic sensor a) sketch of the sensor, b) winding process of sensor coils.

2. MEASUREMENTS

The hysteresis behavior of nonlinear systems causes an impossibility of exact conversion 
of an output sensor quantity into units of measurand (output sensor voltage into measured 
force in the case of the elastomagnetic sensor). Therefore, some methods may be used for the 
conversion  and  sensor  error  suppression.  Using  conventional  methods,  for  example  an 
approximation  or  a  look-up  table,  can  not  sufficiently  suppress  the  sensor  errors.  An 
unconventional solution can be using of neural networks for the conversion and sensor errors 
suppression. We suppose that the performance of neural networks is better than that of other 
conventional  techniques  for  the  conversion.  Existing  solutions  which  overcome  the 
shortcomings of sensors are based on feedforward neural networks [1], [11]. However, they 
do not  include a time-dimension and can not suppress hysteresis  error of the sensor.  The 
proposed  solution  uses  feedforward  neural  networks  which  are  extended  to  input.  This 
extension represents time series of input patterns and it allows hysteresis suppression.

Let us look first at the output sensor characteristic. In accordance with the IEC 61 298-2 
standard  [4], the output sensor characteristic is obtained by using measuring apparatus (see 
Fig. 2). The optimal working parameters for sensor EMS-120kN are: feeding AC current 0.70 
A, frequency 400 Hz [7]. The range of the sensor output voltage is from 1630 mV (unloaded 
sensor) to 930 mV (loaded sensor).

Fig. 2. Measuring apparatus.

The influence of feeding current instability has a sizeable effect on sensor accuracy. In 
order to eliminate it, the feeding circuit has to fulfill a basic condition - the feeding current 
must be constant. In this case, a change of output secondary voltage U2 will be proportional to 
a change of acting pressure force on the sensor core. The measured characteristics of output 
voltage U2↑ (if force F is increasing from 0 kN to 120 kN) and U2↓ (if force F is decreasing 
from 120 kN to 0 kN) are shown in Fig. 3. U2lin is a straight line calculated by the least squares 
method; linear output characteristic: U2lin = -6.0726F + 1658.21.

A classic approach assumes a linear static transfer characteristic. We can calculate force F' 
corresponding to the sensor output voltage U2 (or F'↑ calculated from U2↑ and F'↓ calculated 
from U2↓):

http://www.electronicsletters.com/papers/0011/paper.html#Literatura#Literatura
http://www.electronicsletters.com/papers/0011/paper.html#Obr2#Obr2
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Fig. 3. Characteristics a) measured output sensor voltage (U2 = f(F)), b) sensor errors - inaccuracy and linearity 
error (δ = f(F)).

The  standard  tests  are  done  in  accordance  with  [3],  [4]:  inaccuracy,  measured  error, 
repeatability, hysteresis, and linearity error determined from five upscale and downscale full-
range traverses (n = 5), measured at twenty five points. Inaccuracy is a characteristic of the 
measurement process and describes the (lack of) accuracy. It is determined as the greatest 
positive and negative deviations of any measured value from the ideal value for increasing 
and decreasing inputs for any test cycle separately, and reported in percent of ideal output 
span. Measured error is determined as the greatest positive or negative value from the ideal 
value from the average upscale errors  and the average downscale  errors.  Repeatability is 
defined  as  the  closeness  of  agreement  among  a  number  of  consecutive  output  values 
measuring the same input value under the same operating conditions, approaching from the 



same  direction.  Usually  measured  as  non-repeatability  but  expressed  as  repeatability,  a 
percentage of span.  Hysteresis δhys is defined as the maximum difference in output for any 
given input (within the specified range) when the value is approached first with increasing 
and  then  with  decreasing  input  signals  (usually  expressed  as  a  percentage  of  span)  (2). 
Linearity error δlin is defined as the maximum deviation of any point from a straight line 
drawn as a "best fit" through the calibration points of an instrument with a linear response 
curve (usually expressed as a percentage of span) (3).
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where F'↑, F'↓, F'ave and F are vectors with 25 elements, Fmax = 120 kN, Fmin = 0 kN.
Following previous definitions, the sensor errors are computed in Table 1.

Table 1. Sensor errors.

sensor error label value
Inaccuracy δina -3.16 %; 5.24 %
Measured error δme 4.63 %
Repeatability δrep 1.65 %
Hysteresis δhys 2.13 %
Linearity error δlin 4.63 %

The  inaccuracy  is  the  most  important  parameter  for  determination  of  uncertainty.  It 
includes random and systematic errors and can be expressed by the next equation:

hysmerepina δδδδ ++= (5)

3. PROPOSED MODEL

Feedforward  neural  networks  can  be  applied  as  an  alternative  mathematical  tool  for 
universal function approximation. There is no general rule yet how to design a good neural 
network model, but there are many possibilities in experimental methods.

The proposed model in the paper implies that it has some special properties, known from 
the Preisach model as "wiping out property" (some input extreme can remove the effects of a 
previous extreme) and "congruent minor loop property" [8]. We can assume the existence of 
minor up-loops and minor down-loops inside the major one; it is shown in Fig. 4.



a) b)

Fig. 4. Four times enlarged measured characteristics for better viewing; a) minor up-loops and b) minor down-
loops.

Due to these properties, a training set can be expanded from 2 vectors with 25 measured 
points at upscale and downscale full-range traverses to the two matrixes with dimension (2, 
350), where the first row consists of measured points and the second consists of parameter ς. 
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All the measured data U2n and Fn are normalized to the range (0,1).
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The algorithm of the training set extension is shown in Fig. 5.
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Fig. 5. Algorithm of training set extension.
We have designed two solutions for sensor errors suppression. The first one consists of 

single feedforward NN - marking as model A (see Fig. 6a) [12]. The second consists of two 
feedforward NNs (model B, see Fig. 6b), where parameter  ς determines which part of the 
model will be used (see Fig. 6c). NN1 is activated if ς < 0 and NN2 if ς > 0. The output of the 
model is unchanged if ς = 0. It is described by the next relation:
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Fig. 6. Proposed models: a) model A - classical FFNN model, b) model B - training of the NN1 (NN2), c) NN 
selection based on parameter ς.

The design of the neural network is made in MATLAB7, Neural Network Toolbox 4.0. 
Function sim simulates the network NN1 or NN2 with inputs U2(t) and ς(t). Partial network 
NN1 is trained on minor up-loops data and NN2 on minor down-loops data. To obtain the best 
possible neural network solution we experimented with parameters as the number of epochs, 
type of training function and number of neurons in the hidden layers. Each layer's weights and 
biases are initialized with  initnw. The Levenberg-Marquardt (trainlm) training algorithm is 
used. In general, on function approximation problems, for networks that contain up to a few 
hundred weights, the trainlm algorithm will have the fastest convergence. This advantage is 
especially noticeable if  very accurate training is required.  The  trainlm uses these training 
parameters: 
- performance goal trainParam.goal = 0, 
- maximum validation failures trainParam.max_fail = 5, 
- factor to use for memory/speed trade off trainParam.mem_reduc = 1, 
- minimum performance gradient trainParam.min_grad = 1e-10, 
- maximum number of epochs to train trainParam.epochs = 1000. 

The  trainlm uses  an adaptive  learning rate.  Performance is  measured according to  the 
specified network performance function MSE, which returns the mean squared error:
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where N is the number of training data, yi is output the vector of neural network (FNN), ti is the 
target vector (F). The MSE versus training epochs for model A and B are shown in Fig. 7.
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Fig. 7. Training processes of a) model A and b) model B.

Determination of the number of neurons in hidden layers and selection of the network with 
the best parameters is shown in Fig. 8 (criterion - the smallest hysteresis error) and in Fig. 9 
(criterion - the smallest linearity error). NHL1 represents the number of neurons in the first 
hidden layer (NHL2 - number of neurons in the second hidden layer) in Figs. 8 and 9 (see 
carefully axis in these figures). 

Conclusion  -  model  A is  simpler,  it  has  smaller  stability.  Model  B  is  more  stability, 
however, if it has too many hidden neurons, the network acts like a lookup table.

a) b)

Fig. 8. Hysteresis error of a) model A, b) model B.
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Fig. 9. Linearity error of a) model A, b) model B.

4. EVALUATION OF ERRORS

One of the tasks of neural networks is suppression of linearity and hysteresis errors. From 
this point of view the network 1-2-3-1 (architecture model A) is better suited for the task than 
other networks (the network achieves the best task generalization).However, Fig. 8a shows 
that  any  of  model  A cannot  suppress  the  hysteresis  error  of  the  sensor.  Our  proposed 
architecture model B is much better for errors suppression. With regard to a solution as simple 
as possible, the network 2-4-5-1 (architecture model B) is chosen for the next evaluation. The 
Table 2 shows a comparison of the errors suppression for architectures model A and model B 
with classic approach.  Fig. 10 shows the difference between model  A and model B error 
suppression.

Table 2. Comparison of errors.

classic approach model A (1-2-3-1) model B (2-4-5-1)
Inaccuracy -3.16 %; 5.24 % -1.36 %; 1.36 % -0.97 %; 0.75 % 
Measured error 4.63 % 1.07 % 0.42 %
Repeatability 1.65 % 1.63 % 1.68 %
Hysteresis 2.13 % 2.04 % 0.57 %
Linearity error 4.63 % 0.22 % 0.19 %

a)



b)

Fig. 10. Comparison of errors - inaccuracy and linearity error, a) model A 1-2-3-1, b) model B 2-4-5-1.

5. EVALUATION OF UNCERTAINTIES

Modern measurement theory and practice assume getting a measurement result along with 
some characteristics of its uncertainty. The uncertainty of the measurement result reflects the 
lack of exact knowledge of the specified measurand. The ISO Guide [2] defines uncertainty 
(in Section D.5.2) as an expression of the fact that, for a given measurand and a given result 
of measurement of it, there is not one value but an infinite number of values dispersed about 
the result that are consistent with all of the observations and data and one’s knowledge of the 
physical  world,  and  with  varying  degrees  of  credibility  attributed  to  the  measurand.  The 
Guide  assumes that  the  evaluation  of  all  uncertainty  components  is  based  on  probability 
distributions characterised by variances. The variances are either estimated from a series of 
repeated observations (type A) or assumed to exist and estimated from available knowledge 
(type B). 

The type B evaluation of standard uncertainty is usually based on scientific judgment using 
all of the relevant information available [6]. The uncertainty of the measurement result  ures 

consists of three components:

2 2 2 2
res ina TE ru u u u= + + , (10)

where uina is acquired from sensor inaccuracy, uTE corresponds with manufacturer's specified 
accuracy  of  used  force  device  (test  equipment  for  generating  true  force  F)  and  ur is 
uncertainty of the rounding. In accordance with ISO Guide, rectangular distribution is used if 
an estimate is made in the form of a maximum range (a-, a+) with no knowledge of the shape 
of the distribution. Each component can be expressed by the next equation:

( )
3

au x = . (11)

The maximum range  (a-,  a+)  can  be  represented  by  inaccuracy  range  (δina-,  δina+)/100. 
Following this knowledge, the next relation can be written:
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where FS is full scale,  δAR is accuracy rating of test equipment declared by its manufacturer 
(generally expressed as a percentage of MR - measuring range) and Δ is rounding (rounded to 
two  significant  digits  Δ =  0.01  kN =  10  N).  If  the  distribution  of  the  values  is  almost 
symmetrical the influence of rounding on the uncertainty of result is negligible:
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Computed uncertainties of the measurement result are in Table 3.

Table 3. Uncertainties of the measurement result.

sensor EMS model A (1-2-3-1) model B (2-4-5-1)
uina (kN) 2.91 0.94 0.60
uTE (kN) 0.12 0.12 0.12
ures (kN) 3.03 1.06 0.71

The result of the measurement is given by:

' (kN)res resF F u= ± , (14)

where  F' is  gained  from  a  measuring  system  (with  or  without  neural  network)  and  ures 

represents the appropriate uncertainty of the system.

6. CONCLUSION

The paper brings a new approach to error suppression by using neural networks (model B). 
It is compared with the common approach of using neural networks (model A) and with the 
classic approach without neural network. Model B uses a specific extension of the training set 
based on nonlinear  system properties  with hysteresis.  Moreover,  model  B uses  additional 
neural network NN2 complementary to NN1 and the parameter  ς, which includes the time 
dimension. Described extension of the training set provides good stability of the network and 
good independence from the number of hidden neurons (see Figs. 8b and 9b). Implementation 
of neural networks into the measuring set solves the problem with conversion of output sensor 
voltage into measured force and suppresses errors; linearity error - from 4.63 % to 0.19 %, 
hysteresis error - from 2.13 % to 0.57 %.

The second purpose of this paper is to provide a measurement uncertainty analysis of the 
measuring system with elastomagnetic sensor of pressure force. Significant error sources are 
identified and quantified and the uncertainty of the measurement result is determined. The 
presented methodology of error suppression is generally applicable to nonlinear systems with 
hysteresis. However, the error and uncertainty evaluations are specific to the measurement 
process and test equipment used.
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ZASTOSOWANIE SIECI NEURONOWYCH DO ELIMINACJI BŁĘDÓW W NIELINIOWYCH 
SYSTEMACH Z HISTEREZĄ

Streszczenie

     Niektórymi z wad nieliniowych systemów z histerezą są stosunkowo duże błędy, np. błąd liniowości, błąd 
histerezy  itp.  Artykuł  opisuje  możliwe  ulepszenia   metod  eliminacji  błędów  przy   zastosowaniu  sieci 
neuronowych.  Innym  z  celów  pracy  jest  oszacowanie  niepewności  pomiaru.  Artykuł  dokonuje  przeglądu 
stosowanych obecnie procedur przy obliczeniach niepewności pomiaru  zgodnie z Przewodnikiem ISO.
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