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DATA FUSION APPLICATIONS IN THE TRAFFIC PARAMETERS MEASUREMENT 
 
 

In the paper the problem of measuring road traffic parameters using systems with complex algorithms for 
measurement data processing is discussed. A characteristic feature of these systems is utilising there data 
fusion methods. This way a possibility has been created of linking the knowledge of measuring with an initial 
knowledge on the measurement object. The authors have shown that these methods allow to decrease 
measurement uncertainty, increase measurement reliability or limit the influence of the disturbing factors. 
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1. INTRODUCTION 
 
Each cognitive process is connected with information processing. Information can be 

acquired from various sources and a measuring experiment is one of them. The quality of 
the cognitive process is dependent on the amount and quality of the information collected 
from the measurement object, resources of the a priori knowledge about this object, and 
the quality of processing. Independent of the measurement object and the purpose of the 
cognitive process is the basic principle saying that the richer and more complete 
information is gained from the object, the more reliable effects of the cognitive process are. 
The enrichment of the measurement information gained from the object can be achieved 
not only by increasing the measuring accuracy but also through measuring a greater 
number of appropriately selected object variables. At the stage of information processing, 
it is possible to join the measurement (experiment) knowledge with the a priori 
knowledge, which may considerably increase the effectiveness of the cognitive process. 
Joining knowledge from various sources is called data fusion. Depending on the type of 
information and the structure of the system in which the fusion takes place, it can be 
realized at the level of unprocessed data, features or decision. Depending on its purpose, 
the fusion can be the cooperation, competitive or complementary fusion [1, 2, 3]. These 
problems are presented for the case of measuring the parameters of moving vehicles. 

In particular, these systems classify and weigh moving vehicles (Weigh-In-Motion 
systems, WIM). Also, the problem of using data fusion in the calibration process of WIM 
systems was discussed. 

 
 

2. VEHICLE CLASSIFICATION 
 
Classifying an automotive vehicle means determining to which of the selected classes 

the vehicle belongs. Classification methods are dependent on the vehicle parameters that 
can be determined in a given measuring system and on the classification purpose. 

The simplest classification method, often used in practice, is based on measuring the 
vehicle length. Not more than three classes are then defined. The method can be applied in 



a very simple measuring system, e.g., in a single-sensor system with an inductive loop 
utilizing only the signal of vehicle occurrence above the sensor. 

When the necessity of defining more (four or five) classes arises, it is possible to use a 
system with inductive sensor and process the obtained magnetic profile of the vehicle. The 
profiles generated by different vehicles differ in shape, amplitude, frequency spectrum, 
statistical parameters, etc. One method out of the magnetic profile preprocessing methods 
consists in transforming the profile into the vehicle length domain [4]. This operation 
results in that the profile contains the combined information on the shape and length of the 
primary profile, which enables a more selective classification to be made (Fig. 1). To carry 
out such transformation the information on vehicle speed is also necessary. This 
transformation is therefore an example of data fusion. Also, amplitude standardization can 
be abandoned, gaining in this way additional information on the vehicle suspension height. 
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Fig. 1. Bus magnetic profiles in the vehicle length domain. 
 
Nonparametric classification methods consist in comparing directly the profile 

generated by the vehicle being classified (after transformation) with the reference profiles 
representing each of the defined classes. Depending on vehicle class, the effectiveness of 
such classification ranges from 67% to 100%. 

Parametric methods consist in comparing the profile parameters of the vehicle being 
classified and those of a reference vehicle. The effectiveness of the classification based on 
individual profile parameters is unsatisfactory [5, 19] (depending on the selected 
parameter, the effectiveness gained is 60% –70% for one of the classes and considerable 
worse for the others). 

Combined utilization of various parameters is much more effective: the classification 
effectiveness in all classes under consideration is then increased and equalized [5, 6]. Such 
action is called decision fusion. It can be implemented basing on voting or weighted voting 
methods, or hierarchical methods. Depending on the class, the classification effectiveness 
of the voting methods is in the interval of 50% to 97%. The classification effectiveness of 
the hierarchical methods ranges from 77% to 96%. 

Describing reference data with fuzzy measures is another approach to the classification 
problem. A model of any class consists of a set of membership functions (similarity 
measures) defined for selected parameters. The membership functions are determined 
using statistical analysis (mean and standard deviation) of a selected parameter. Both 
simple logical functions operating on fuzzy sets (OR and AND, fuzzy set normalized 
power), and more complex functions enabling weighting coefficients to be taken into 
account are selected as functions realizing data fusion [7, 8]. In this case, the classification 
effectiveness depends on the set of selected parameters, adopted shape of fuzzy measures 
(triangular, gaussian), and on the functions realizing data fusion. The method’s 



classification effectiveness reaches 92 - 94% for five selected magnetic profile parameters 
and four defined vehicle classes. 

It is also possible to join the parametric and nonparametric methods. In [9] an algorithm 
is presented which utilizes a neural network to fuse the features obtained from the profile 
and the samples of this profile. A classification effectiveness of 89% was reached for five 
defined vehicle classes. 

Vehicle classification can also be effected by measuring the number of vehicle axles. It 
is particularly important in vehicle weighing systems. To decide on exceeding the 
allowable load values, it is necessary to combine the obtained result of weighing and the 
result of classification. However, such classification may be not selective enough. It is then 
necessary to measure the inter-axle distances. Taking into account this parameter improves 
considerably the classification selectiveness although requires the vehicle speed to be 
measured. In such a system also vehicle length (treated as a parameter auxiliary to the 
classification process) is measured and a trailer is detected. So the measuring system must 
cooperate with different-type sensors and realize the fusion process (complementary 
fusion, increasing the completeness of object description) of the data acquired from these 
sensors and the possessed a priori knowledge. 

Typical measurement signals from a system with complementary fusion implemented 
are presented in Fig. 2. Such a system allows to differentiate between 13 - 14 vehicle 
classes [10]. 
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Fig. 2. Measurement signals from a multi-sensor system with complementary fusion implemented taken 

from a three-axle vehicle with two-axle trailer. 1 - vehicle presence signal; 2 - trailer presence signal; 3, 4 - 
signals from axle load sensors. 

 
Complementary fusion can also be realized having a single detector and an inductive 

loop only. Depending on the shape and size of the loop, the range of the electromagnetic 
field generated by the loop will be different. The resulting measurement signal (magnetic 
profile) will contain different information on the vehicle that moved above this loop 
(Fig. 3). 
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Fig. 3. Passenger vehicle profile acquired from sensors of a) 150 cm, b) 10cm width. 
 
A thin loop enables detection and vehicle axles counting to be carried out. The 

mechanism of complementary fusion realized at the sensor’s level can be explained with 
the fact that the measuring sensors react simultaneously to many different physical 
quantities. This makes it possible to collect greater an amount of information on the object 
with a single sensor provided that the user can extract from the measurement signal the 
information relevant to each measured quantity or can utilize the combined information. 

 
 

3. WEIGH IN MOTION 
 
The term weigh-in-motion (WIM) means a process of measuring the dynamic wheel 

forces of a moving vehicle onto the road and estimating the corresponding static loads or 
total weight. The lack of significant limitations posed on the vehicle speed is a 
characteristic feature of such weighing systems. In general, the WIM systems complement 
the static vehicle weighing stations, playing the role of preselection systems. 

Classic WIM preselection systems are based on an inductive sensor and two load 
sensors. Such system configuration allows to estimate static loads of individual axles, total 
weight and classify a vehicle based on the number of its axles. Also, the pavement 
temperature is measured as this is necessary for correction of weighing results which 
depend on the thermal and mechanical properties of the pavement and sensors. In such a 
system the data fusion is realized to make the description of the object under consideration 
complete and to ensure the high possible measuring accuracy. The High Speed WIM 
preselection systems provided with two load sensors can determine the total weight of a 
moving vehicle with an error not less than 10 - 15%. The main reason is the occurrence of 
the dynamic component in the signal of vehicle load on the road surface (Fig. 4). The 
amplitude of this component depends on the pavement quality and vehicle speed and may 
achieve even up to 40% of the static load value [11]. 
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Fig. 4. Relative changes of the vehicle instantaneous axle load at the speed of 100 km/h. 



Weighing vehicles with an accuracy of 1% or 2% is now possible with static or low-
speed (up to 6 km/h) scales only. The improvement of measuring accuracy of the total 
weight and static axle loads of vehicles moving with a road speed up to the accuracy of 
low-speed scales is possible through building multi-sensor weigh-in-motion systems (MS-
WIM), developing static load estimation algorithms, and applying suitable methods for 
calibrating such systems. Based on the analysis of pavement models [11, 17] and selected 
models of vehicle suspension, it was found that the following relationship is a good 
approximation of the signal of the force the vehicle wheels exert on the pavement during 
vehicle motion: 
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where: F0 - static load exerted on the road by a stationary vehicle, [ ]∑
=

•
M

k 1
 - dynamic 

components occurring during vehicle motion, kkk ,f,F ϕ  - parameters of the dynamic load 
components: amplitude, frequency and phase angle, respectively. 

Depending on the required modelling accuracy and suspension construction in the 
vehicle under consideration, different numbers M of dynamic components (usually M = 1 
or M = 2) [12, 18, 20] are defined in the model. Frequencies f1 and f2 in this model describe 
the vertical oscillation of the suspended vehicle mass and wheel hopping (oscillations of 
unsuspended mass), respectively. Depending on the vehicle class and vehicle total weight, 
these frequencies are Hz54511 ..f ÷=  and Hz1582 ÷=f , respectively. The amplitudes of 
individual dynamic components are significantly dependent on the vehicle speed. 

To solve the problem of estimating the axle static load, F0, the following estimates are 
used [10]: 
• mean value, usually calculated from the results of instantaneous load on successive 

maximum likelihood estimator (ML). It allows to determine the components of state 
vector (containing three (M = 1) or five coefficients (M = 2) 
[ ]222211110 cossincossin ϕϕϕϕ FFFFF , depending on the model assumed). 
Assuming the frequencies f1, f2 are known, the values of model coefficients (state vector 
components) are sought that maximise the likelihood function [23]. As in practise the 
frequencies of dynamic components are not known a priori, the solution to the problem 
is being determined for each pair (f1, f2) of frequencies selected after searching with the 
assumed step the variability intervals assumed for each of these frequencies. The final 
result of identification are such values of the sought coefficients which produce the 
maximum value of the likelihood function. Quantization of the obtained frequency 
estimates f1, f2 is the basic cause limiting the accuracy of this estimation method. 

• nonlinear least-squares estimator (NLS). The method consists in determining such 
signal model coefficients for which the least-squares criterion adopted as the measure of 
the distance between the measurement results and the model (1) reaches minimum. 
With a nonlinear relationship between model response and the coefficients, the 
minimisation can be carried out only approximately, according to an iterative algorithm. 
The high sensitivity of such an algorithm to the coefficient initial value is one of the 
cumbersome disadvantages of the algorithm. Because of high variability of weighed 
vehicle parameters (speed, total weight, frequency and amplitude of suspended and 
unsuspended mass fluctuation), the accuracy of this algorithm with no additional 
modification is not satisfactory. 

• nonlinear Kalman filter (NKF). The operating of the Kalman filter may be interpreted 
as algorithms of prediction and correction alternatively repeated implemented to 



successive measurement signal samples and the calculated model response (1). Each 
sensor installed into a MS-WIM system is assigned one load signal sample. In each 
cycle, the successive improved estimates of the state vector are determined, taking into 
account the axle load measurement results collected successively by the individual load 
sensors during the travel of the weigh vehicle. This estimator has good properties which 
are available, however, for a relatively high (compared to other estimators) sampling 
frequency and large number of measurement signal samples. For this reason, the 
estimator is not suitable for processing signals from such MS-WIM systems where no 
more than twenty load sensors are used. 

• modified nonlinear least-squares estimate (MNLS). The modification consists in 
connecting the ML estimator, generating an initial estimate of the parameters to be 
determined, with the NLS estimator. The NLS estimator allows to determine more 
accurate estimates, quantization error eliminated. At the same time this modification 
solves the problem of selecting starting values for the NLS iterative algorithm. 

• artificial neural networks (usually of back propagation type) [13, 14]. The 
implementation of this algorithm may be difficult under real conditions because large 
(of order of several thousand) teaching and test sets have to be collected for each 
considered class and vehicle type, which may be very difficult for WIM systems. 
To assess and compare the above mentioned estimators, the following characteristic was 

applied: 
 

 ( ) ( )δδ PPr −= 1 , (2) 
 
where: ( ) 000 FFF̂ −=δ  is the absolute value of the relative estimation error of the static 

component F0, 0F̂  is an estimate of the static component, P(δ) is the cumulative probability 
distribution function of error δ. 

This characteristic specifies the occurrence probability of error greater than δ and is 
called reliability function. Measuring systems with 16 load sensors distributed uniformly 
every 1.7 m distance, and non-uniformly with distance between successive sensors 
decreasing linearly were considered. The distance of 1.7 m between the first sensors was 
decreased for each sensor by 0.1 m. In Fig. 5 typical characteristics allowing to compare 
the described estimators are presented. 

From the characteristics presented in Fig. 5 it follows that the probability of exceeding 
the weighing error of 0.02 depends on the applied estimation algorithm and equals 0.18 for 
the MNLS estimator, 0.22 for ML estimator, and 0.49 for simple averaging (Mean). 
Applying a non-uniform layout of sensors allows to reduce considerably this probability 
for the MNLS estimator. For the other two estimators, this probability increases 
considerably. The choice of the estimation algorithm depends mainly on the speed at which 
the weighed vehicle is moving. The characteristics shown in Fig. 6 confirm the possibility 
of a significant improvement of weighing accuracy by adaptive selection of load estimation 
algorithms depending on the speed of a weighed vehicle. 

The architecture of the MS-WIM systems is usually organized in such a way that the 
successive pairs of load sensors are operated by the individual sub-systems. Their task is to 
preprocess signals. After processing is over (so in an asynchronous way), each of these 
sub-systems sends its measurement results. The data received by a host system must be 
properly associated because of the fact that more than one vehicle may be present on the 
measurement site. Next, the data must be aligned in regard to the vehicle occurrence time 
at the successive sensors (this is required by the load estimation algorithms). Both stages 
are an important element of the data fusion process realized at the central level. After these 



initial operations are done and the non-exceedance of imposed limitations (e.g., the 
variability of vehicle speed during travelling through the measuring site, data 
completeness) is checked, measurement data processing can be carried out according to the 
relevant estimation algorithm (whose selection realized on line will depend on vehicle 
speed, vehicle classification, etc.) (see Fig. 6). In such a multi-sensor data fusion process, 
the a priori knowledge plays an important role and is taken into account through applying 
the appropriate number of load sensors and their optimum distribution. This knowledge is 
acquired from the experience of other constructors, model studies, measurements of 
vehicle stream parameters at the WIM site location and the resulting parameters of 
acquisition and signal preprocessing, limitations of various types, etc.  
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Fig. 5. Characteristics (2) for M = 2 and three comparable static load F0 estimation algorithms for: a) 
uniform; b) non-uniform distribution of 16 sensors. 

 
The number of load sensors applied is usually limited by economic reasons, although in 

[13] there has been shown that this number can be limited because of the properties of the 
applied estimation method and the lack of its accuracy improvement after exceeding a 
certain number of sensors.  
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Fig. 6. Characteristics (2) for M = 2, uniform distribution of 16 sensors, different speeds and three 
comparable static load F0 estimation algorithms. 

 
 

4. CALIBRATION OF WIM SYSTEMS 
 
The aim of calibrating a WIM system is to determine experimentally the system transfer 

constant C which allows to determine the axle static load of a weighed vehicle and the 
vehicle total weight according to (3). 



 Wd
C

Ws 1
= , (3) 

 
where: Ws - calibrated weighing result, i.e., the vehicle total weight or the static load of a 
selected axle; Wd - non-calibrated weighing result, i.e., the result of processing of load 
signal from WIM system sensors. 

The calibration of a WIM system can be carried out using several different methods: 
with the use of static or dynamic force setters, using pre-weighed vehicles or an 
instrumented vehicle, i.e., a vehicle where a possibility exists to continuously record its 
dynamic axle loads exerted on the road surface during travel [15, 16]. All these methods 
have both advantages and disadvantages. Main disadvantages include high costs of 
implementation of these methods and their high time consumption. On the other hand, the 
nonstationarity of WIM systems require that their calibration should be often repeated 
according to the rule: the more frequent calibration the more accurate system. 

A new calibration method consisting in data fusion has been designed. The current 
measurement results in the WIM system are combined with an a priori knowledge about 
the axle loads of a selected class of vehicles moving along a given road and adopted as the 
reference vehicles. 

A characteristic feature of the proposed autocalibration method is determining the 
current estimate of the system constant after passing of any vehicle recognized as the 
reference one. Thanks to this, the system acquires the possibility to react automatically to 
the changes of many factors affecting its operation, such as the variation of temperature, 
humidity, sensor sensitivity, etc. 

A sufficiently small random variability of a parameter to be measured over the whole 
population of reference vehicles should be their characteristic feature. A necessity of 
precisely identifying a selected vehicle class is an additional requirement. 

Five-axle units consisting of two-axle truck-tractor and three-axle trailer are a 
characteristic vehicle class. As the WIM systems can measure also the inter-axle distance 
(with a resolution not worse than 10 mm), this allows to detect easily the vehicles 
belonging to this vehicle class. Moreover, a characteristic feature of the five-axle units is 
small random variability of the load exerted by the first axle within the widely understood 
variability range of the vehicle total weight. In Fig. 7, estimates of probability density 
functions are presented describing the variability of weighing results for this class obtained 
from low-speed vehicle scales. The size of measurement result population was limited by 
technical reasons and equalled 82. 
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Fig. 7. Probability density functions of the five-axle unit front-axle loads and the unit total weight 
determined using a low-speed vehicle scales. 

 



The results presented in Table 1 show that the front-axle load is not only of the smallest 
random variability ( 005302 .=σ ) but also is the least correlated with the variability of the 
loads of the other axles and with the vehicle total weight (cov = 0.0018 to 0.0040). The 
observed correlation is 3 to 5 times smaller than for the other axles. Based on these 
premises, the front-axle load of this vehicle class was accepted as the reference value. The 
mean front-axle load is w  = 61677 N. 

 
Table 1. The covariance matrix of the 5-axle vehicle static weighing results. 1 through 5 - statistical 

parameters of successive axle load measuring results, 6 - statistical parameters of vehicle total weight 
measuring results. 

k 
i 

1 2 3 4 5 6 

1 0.0053 0.0036 0.0018 0.0039 0.0040 0.0038
2  0.0222 0.0041 0.0060 0.0077 0.0101
3   0.0376 0.0266 0.0171 0.0159
4    0.0299 0.0255 0.0176
5     0.0480 0.0197
6      0.0134

 
Because of the continuous character of a calibration process, the estimation of the 

transfer constant C is made in an iterative way, e.g., according to an algorithm with an 
exponential forgetting [21]. 

According to this algorithm, the successive estimates nĈ  of the forgetting constant are 
described by Eq. (4). 
 
 ( )111 −−− −+= nnnnn ĈwWdKĈĈ , (4) 
 
 ( )λ+= − wPw.b nn 11 , (4a) 
 
 nnn bwPK 1−= , (4b) 
 
 ( ) λ11 −− −= nnnn PwKPP , (4c) 
 
where: λ - the forgetting constant, λ ≤ 1, n is the iteration number corresponding to the 
number of the successive reference vehicle which passed the station under calibration. 

The dynamics of this system is characterised by the so called forgetting constant λ. The 
time intervals between the moments of determining the successive estimates correspond to 
the moments at which the successive reference vehicles pass the WIM station. 

In the case of systems significantly nonstationary, too large time distance between the 
successive reference vehicles may force using the algorithm with a small value of the λ 
coefficient. In consequence, this will cause high random variability of transfer constant 
estimates, and therefore of weighing results. Although accepting the values of the 
coefficient λ close to unity will decrease this random variability, it will cause that the 
dynamic properties of the estimation algorithm would be very bad. The necessity of a 
compromise between both limitations causes that the discussed calibration method may be 
used on the roads with a large number of reference vehicles passing through the calibrated 
station during a time unit. 

In order to solve the above problem, a modification to the transfer constant estimation 
algorithm may be introduced that consists in making the forgetting constant λ dependent 



on the time interval between the successive reference vehicles [22] according to the rule 
that the smaller value the coefficient λ assumes, the longer the expecting time for the next 
vehicle. 

Based on simulation study, a comparison was made between the basic (λ = const) and 
modified (λ = var), algorithm operation, and the results are presented in Fig. 8. The 
nonstationarity of the system was simulated making the measurement transfer constant 
variable. 
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Fig. 8. Linear time relationship of the WIM system transfer constant (1) and the results of its estimation: 2 
- algorithm (4), λ =0.1; 3 - algorithm (4), λ = 0.9; 4 - algorithm (4) with modification λ = var. 

 
Algorithm (4) with also in case modification is valid of step change of system 

parameters which is pictured in Fig. 9. Such a situation may occur in reality e.g., in the 
case of a load sensor failure. 
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Fig. 9. Step variability of the WIM system transfer constant (1) and the result of its estimation: 2 - 
algorithm (4), λ = 0.1; 3 - algorithm (4), λ = 0.9; 4 - algorithm (4) with modification λ = var. 

 
The modified WIM system transfer constant estimation algorithm allows to make 

current calibration of nonstationary systems with the simultaneous minimisation of the 
random variability of weighing results. 

 
 

5. CONCLUSIONS 
 
Selected problems of applying data fusion to measuring vehicle-in-motion parameters 

are presented in the paper. The approach was taken from two aspects: increasing the 



description completeness of the object undergoing measurement, and achieving the highest 
possible measurement accuracy of object parameters, or classification effectiveness. 

These purposes were realized through the adequate selection of the number and type of 
sensors, their construction parameters, systems of their cooperation, and also of through 
initial operations on signals (e.g., by transforming into the vehicle length domain, 
parameterisation, association, alignment, etc.). Another not less important problem was the 
selection of the vehicle classification method (parametric, nonparametric) and vehicle axle 
load estimation and calibration methods. 

In regard to the measurements presented, data fusion was applied both at the level of 
sensors, features, and decisions. Examples of complementary and cooperation data fusion 
were presented. It was shown that in each of these cases the quality or quantity of the 
results were better than when no data fusion would have been applied. 

The presented study results point at the possibility of utilising data fusion and applying 
the presented WIM system autocalibration method to eliminate both the slow trend and 
jump changes of the transfer constant values of the WIM system. The structure of traffic 
stream observed on Polish roads meets the requirements demanding for the application of 
this calibration method. However, still open remain the problems of estimating the vehicle 
weighing uncertainty in the system calibrated according to the discussed method and of the 
assessment of the parameter influence of both the traffic stream (frequency of occurrence 
and the number of reference vehicles) and the WIM site (type and number of the sensors 
used, the amount of nonstationarity) on this uncertainty. 
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ZASTOSOWANIE FUZJI DANYCH W POMIARACH PARAMETRÓW RUCHU DROGOWEGO 
 

Streszczenie  
 
Praca dotyczy zagadnienia pomiaru parametrów ruchu drogowego przy użyciu systemów realizujących 

złożone algorytmy przetwarzania danych pomiarowych. Cechą charakterystyczną omawianych systemów i 
algorytmów jest wykorzystanie w nich metod fuzji danych. W ten sposób stworzona została możliwość 
łączenia wiedzy pomiarowej z wiedzą wstępną posiadaną na temat obiektu pomiarowego. Autorzy wykazali, 
że metody te pozwalają zmniejszyć niepewność wyniku pomiaru, zwiększyć jego rozdzielczość lub 
ograniczyć wpływ czynników zakłócających. W pracy przedstawiono problemy związane z klasyfikacją 
pojazdów, ważeniem pojazdów w ruchu oraz kalibracją systemów ważących. 
 


