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DYNAMIC MEASUREMENT OF THE CURVE y(x) DEFINED BY  
PARAMETRIC RELATIONS x(t), y(t) UNDER RANDOM DISTURBANCES 

 
 

Analog XY-recorders constructed as servomechanisms with sliding motion have been practically out of use 
for some time. Drawing the curve y(x) defined by parametric relations xz(t), yz(t) under additive, random 
disturbances is done by using measuring sensors with negligible dynamic properties, A/D converter card, 
computer and a printer, with a different time scale and with elimination of the influence of the dynamics of these 
devices . The influence of disturbances can be significantly lowered either by using special filters before storing 
the data in computer memory or by suitable processing of the data already stored in the computer memory. In the 
first case we have to choose an appropriate filter type and its time scale factor T, and in the second case - an 
appropriate processing mode in order to get the resulting curve Y(X) as close as possible to the theoretical curve 
y(x). Both techniques provide different possibilities and create different problems which require separate 
considerations. 
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1. INTRODUCTION 
 

The problem of dynamic measurement of the curve )(xy  defined by parametric relations 
x(t), y(t) was discussed in [1]. Since then the measurement technique has changed 
considerably which fully justifies reconsideration of the problem The measurement track of 
each component quantity x(t), y(t) consists of a sensor with negligible dynamics, possibly, a 
filter attenuating disturbances, since at the sensor outputs we get signals )()()( tztxtx xz += , 

)()()( tztyty yz += , an A/D converter card (usually, the same one for both channels) and 
computer memory. The use of a printer with a suitable software allows to obtain the curve 

)(XY  in time different from the real one but with elimination of the dynamics of the 
recording itself. There are two possibilities: the first one which relies on filters lowering the 
disturbance influence but at the same time introduces some deformations of x(t) and y(t), and 
the second one which does not use filters but replaces them by suitable processing of the 
disturbed signals xz(t) and yz(t)stored in computer memory and in which disturbance 
attenuation only slightly deforms the curve Y(X) with respect to the ideal curve (measurand) 
y(x). Since processing is done by the “batch” method in time different than the actual one 
there is a possibility of using specific methods which are more complex and in some 
circumstances more effective in comparison with the use of filters. We will discuss both 
above methods. 
 
 

2. USING FILTERS WORKING IN REAL TIME 
 

Let us assume that signals xz(t) and yz(t) provided by the measuring sensors and bearing 
disturbances, are first filtered and then stored in computer memory. Since selection of optimal 
filter transmittances requires not easily accessible information and complicated calculations 



then it seems to be justified to consider the possibility of preliminary selection of a filter type, 
close to optimal, followed by an adjustment of the filter time scale factor T according to 
current conditions. The problem stated in this way can be solved using simplified dynamics 
models based on the Taylor series expansion of the convolution integrand function [2]. 
 

2.1. Simplified models of dynamics 
 

The convolution of the filter input signal x(t) (or y(t)) and the output signal X(t) (or Y(t)) 
can be expressed in the form: 
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if we expand term )( vtx −  in the Taylor series in the neighborhood of t  and introduce the 
notion of the i -th moment of the filter impulse response k(t) as: 
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For all signals x(t), continuous for t 0> , the series (1) is convergent and for “smooth” signals, 
with decreasing share of higher order derivatives )()( tx i , it can be replaced by the sum of a 
few initial terms. Setting: 
 

 ),()(0 thtm =   )(
!
)1()( 00 txt

i
ttx ii

oi

i

∑
∞

=

−
=− , (3) 

 
we obtain models of the form: 
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where h(t) is the step response of the filter, 
 

 ),(/)()( 010 tmtmtt =   )]()()([
!
1)( 00 tttmtm
i

tR i
ii −= , (5) 

 
)(),( tztz yx  are disturbances occurring in tracks x and y, where we also assumed that both 

filters are identical. 
It is worth to point out the following facts: 

If in expressions (4) we omit terms with higher order derivatives )(),( )()( tytx ii  for 2≥i , and 
disturbances, then the delay t0(t) does not deform the relation Y(X) in comparison to y(x) 
provided 1)( ≅th  with sufficient accuracy, i.e., after the settling time ut  of the filter. Since 



changes of t0(t) last much longer than changes of h(t) it is recommended that t0(t) in both 
measuring tracks is the same and this justifies the use of two identical filters. Thus the 
conditions of appropriate filtration have the form: 
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where e is a sufficiently small number, and can be used to select a filter and its time scale 
factor T. 
 

2.2. Filter selection criteria 
 

Let us initially assume that filter is a linear element with the transmittance: 
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where T is the time scale factor and m < n. 

The first condition of appropriate filtration 1)( ≅th  is satisfied after the settling time tu 
defined by the inequality: 
 
 δ

δ
≤− ≥ uttth |1)(| , (8) 

 
where the quantity δ  is chosen arbitrarily. In our consideration we assume 05,0=δ  and the 
settling time δut  is found by means of simulations. Since it is proportional to the factor T we 
can assume T = 1 and calculate the ratio tuδ / T. This time should be as small as possible since 
for δutt <  the curve Y(X) is drawn in a different time scale in comparison to the curve y(x). 

The second condition of appropriate filtration is to keep a required level of disturbances. 
Exact computations require the knowledge of the disturbances power spectral density. In the 
simplest and at the same time bad conditions we can assume that disturbances are 
characterized by a minimal frequency 2Ω  and overall gain Z. The filter should attenuate the 
gain to the admissible level equal to eT. This means that we have to satisfy the condition: 
 
 eTjK f ≤Ω |)(| 2 , (9) 
 
which allows to find the required minimal value T2Ω  for arbitrary assumed value of e (in our 
considerations we assume 1.0=e ). The filter also deforms useful signals x(t) and y(t). If the 
frequency band of these signals is (0, Ω1), then we may require to fulfill the condition: 
 
 δω ω ≤− Ω≤ 1

|1)(| 1TjK f , (10) 
 

which allows to find maximal value of the product T 1Ω . 
The smaller is the ratio 12 /ΩΩ  the narrower is the frequency band where filter damping is 
too low for disturbances and too high for the useful signal. Thus the small value of the ratio 

12 /ΩΩ  can be regarded as a possible criterion of the filter selection. Short settling time δut  



can be another criterion. Since it depends on the time scale T and the filter has to attenuate 
disturbances, then it is necessary to satisfy the condition (9) and consequently to use the index 

))(/( 2TTtu Ωδ  as a quantity independent of the time scale T. 
The deformation of the useful signal can be assessed in another simple way. Since the 

output signal of the measuring track is approximately [3] equal to the average value of the 
output signal over the time interval )0 ,( uT− , where )(2 11 baTTu −≅ , then we can minimize 

deformation by minimizing the product 22
1

ΩuT  as independent of the time scale T. This 

slightly different criterion than the mentioned product 2Ωδut . We can also minimize the value 
),(tRi  e.g., for 4 ,3 ,2=i , assuming that the recorded signals x(t) and y(t) are smooth. 

Calculation of )(tRi  is difficult and leads to very complicated formulas so in practice we have 
to restrict ourselves to the analysis of the value )(∞iR . The following formulas hold: 
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In order to make the value i

i TR /  independent of the time scale we have to use the 
product i

iR 2Ω  and remember that i
i tR 2)( Ω  achieves its steady-state value after a long time of 

the order , )3...2( δut  and the maximum of )(tRi  may be larger than )(∞iR . For this reason 
criteria of the form =Ωi

iR 2 minimum are less useful, however the smaller the values of these 
indices the better. 
 

2.3. Survey of properties of some typical filters 
 

From the point of view of the mentioned criteria some typical filters (Butterworth, 
Tchebyshev, Legendre) are analyzed together with some filters in the form of time lag 
systems of n-th order and “Pade filters” of order m, n built as Pade approximations of the non-
deforming transmittance )exp( 0sT− , i.e., approximations by rational functions with m-th 
order nominators and n-th order denominators [4]. In each case the filter transmittance is 
transformed to the overall form (7) with 1=na  and with preservation of the condition (10), 
essential for Tchebyshev and Legendre filters. Some Pade filters do not satisfy this condition 
and have been rejected. The corresponding collection of performance indices obtained during 
simulations is presented in Table 1. 
 

Table 1. Collection of performance indices for filters discussed in the paper. 
Filter 
type T1Ω  T2Ω  12 /ΩΩ ut2Ω uT2Ω 2

22ΩR 3
23ΩR 4

24ΩR  342 / RRΩ  

I - 1 0.33 9.95 30.2 29.8 9.95 49.5 821 9390 11.4 
I - 2 0.23 3.00 13.1 14.2 6.00 9.00 72.0 351 4.88 



I - 3 0.19 1.91 10.2 12.0 5.72 5.46 38.2 154 4.03 
I - 4 0.16 1.47 9.13 11.4 5.88 4.32 29.7 114 3.94 
I - 5 0.14 1.23 8.54 11.3 6.15 3.78 26.4 101 3.83 
B - 2 0.57 3.15 5.50 9.22 4.46 0.00 14.8 115 7.77 
B - 3 0.69 2.15 3.11 12.8 4.30 0.00 3.31 14.3 4.32 
B - 4 0.76 1.78 2.35 12.2 4.64 0.00 2.02 9.39 4.65 
B - 5 0.80 1.58 1.98 12.1 5.12 0.00 1.63 8.38 5.14 
B - 6 0.83 1.47 1.76 15.8 5.67 0.00 1.49 8.39 5.63 

P - 1.2 0.61 8.21 13.5 33.2 20.1 0.00 0.00 2.27  
P - 0.3 0.67 2.16 3.24 12.1 3.93 0.00 0.00 11.9  
P - 1.3 0.72 2.70 3.76 11.6 7.80 0.00 0.00 31.8  
P - 2.3 0.75 7.71 10.2 71.7 27.6 0.00 0.00 0.00  
P - 1.4 0.96 2.08 2.16 14.1 6.87 0.00 0.00 0.00  
P - 2.4 0.81 2.70 3.33 19.6 11.8 0.00 0.00 0.00  
C - 2 0.89 3.21 3.59 16.9 3.71 3.41 33.8 138 4.08 
C - 3 1.11 2.29 2.06 16.6 4.39 2.31 18.1 91.2 5.04 
C - 4 1.30 2.01 1.54 18.9 4.26 2.16 18.9 81.1 4.29 
C - 5 1.38 1.90 1.38 15.8 5.68 2.83 28.2 168 5.96 
L - 3 0.58 2.26 3.90 11.2 4.43 1.78 12.8 62.9 4.91 
L - 4 0.71 1.92 2.72 11.2 4.67 0.00 2.48 23.0 9.27 
L - 5 0.90 1.81 2.02 15.2 5.39 0.90 7.42 3.18 0.43 

I - k: time lag filters of order k, B - k: Butterworth filters of order k, P - i, j: Pade filters, 
C - k: Tchebyshev filters of order k, L - k: Legendre filters of order k. 

 
It is difficult to determine a priori which of these indices are more important than the 

others. However, it seems that we should reject filters for which values of 4
24ΩR  are large, 

e.g. larger than 100, and also filters for which index δut2Ω  is large, e.g. we have rejected 
cases where its value exceeded 15. We will analyze now filters of the type B-3, B-4, B-5, P-
0.3; P-1.3; P-1.4; L-3 and L-4.  
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Fig. 1. Coordinates of points determined by filter performance indices. 
 
In Fig. 1 we mark points corresponding to various coordinates as follows: ),( 22 uu Tt ΩΩ δ - 

circles, )/,( 122 ΩΩΩ δut  - rotated crosses, and )/,( 342
3
23 RRR ΩΩ  - crosses, for selected filters 

and as an illustration for a few rejected filters. Good accumulation is shown by points of 
filters B-3, B-4, B-5, L-3, L-4, P-0.3; and P-1.3 – their range is bounded by an ellipsoid and it 
seems that these types of filters should be taken into consideration, including the simplest 
filters. A collection of parameter values of such filters is presented in Table 2. 

 



Table 2. Collection of parameter values for selected filters. 

Filter type a1 a2 a3 a4 b1 
B - 3 2.000 2.000 1.000 0.000 0.000 
B - 4 2.613 3.414 2.613 1.000 0.000 

P - 0,3 1.817 1.651 1.000 0.000 0.000 
P - 1,3 2.163 2.079 1.000 0.000 -0.721 
L - 3 1.961 1.575 1.000 0.000 0.000 
L - 4 2.431 2.955 1.955 1.000 0.000 

 
2.4. Simulations 

 
The useful signal has been assumed in the form ,5.0cos)1.0exp()( tttx −−=  

ttty 5.0sin)1.0exp()( −= with pseudorandom disturbances and the minimal frequency 
1.52 =Ω s-1. The ideal curve y(x) and the curve with disturbances are shown in Fig. 2a. After 

applying a filter of the type L-4 with the time scale T chosen according to the proposed 
principles we obtained the following graphs shown in Fig. 2b: ideal curve y(x), curve 
Y(X)without disturbances with the use of filtered denoted as 4)( Lxy + , and the graph Y(X) 
with disturbances with the use of filter denoted as 4)( Lxy zz + . The graphs 4)( Lxy +  and 

4)( Lxy zz + differ from each other only slightly which proves a high efficiency of the 
disturbance elimination by filters. Comparison of y(x) and 4)( Lxy +  shows the influence of 
time scale change at the initial stage, when utt < . Graphs in Fig. 2c show y(x) without 
disturbances, and )( zz xy  with the use of filterers L-4, P-1.3 and also the worse filters: B-2, I-
1, I-2 and I-4, with parameter T chosen according to the assumed principles. These graphs 
deflect much more from the ideal graph (especially, in the case of time lag filters I-1, …, I-4) 
which fully justifies the our choice. 
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Fig. 2. Ideal curve y(x) and simulation results for Y(X)obtained from disturbed measurements by means of 
various types of filters. 

 



3. “BATCH” PROCESSING OF DISTURBED SIGNALS )(txz  AND )(tyz  
 

Recording of signals xz(t) and yz(t) in the computer memory allows for their “batch” 
processing, without restrictions imposed by filters working in real time, i.e. according to the 
causality principle. As a fundamental operation which attenuates disturbances we can use 
averaging of signals [5] with the even weight function )(tg  satisfying the condition: 
 
 )()( tgtg −=  (12) 

 
and the normalizing condition: 
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Taking into account that ),()()( tztxtxz +=  assuming continuity of the function x(t) and 
expanding )( 0 vtx +  into a Taylor series we obtain: 
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where: 
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because the function g(t) is even (see (12)). This type of averaging does not introduce delays 
and in the case of different signals xz(t), )(tyz  we can use different weight functions  ),(tg x  

)(tg y  which are also called measurement windows. The norming condition (13) implies that 
the weight functions have to depend on the width of the averaging interval ) ,( dd−  and hence 
also their moments igm 2  depend on d. For a given type of the weight function we have to 
choose parameter d in such a way that, e.g. the averaged value of the disturbance component 
with minimal frequency 2Ω  is sufficiently small (condition (3)). For this purpose it 
convenient to use logarithmic plots of the spectrum of windows )( ωjG , for which we define 
the so-called bandwidth and the roll-off rate. As a selection criterion for the type of window 
we can assume a minimal value of the product 2Ωd  together with minimal values of moments 

igm 2  and the condition on appropriate filtration of disturbances, the quotient of the bandwidth 

1Ω  and the band 2Ω , defined as for usual filters, etc. The measurement windows have rich 
literature [6], [7] and their discussion does not seem necessary within this context. However, 
it is worth to point out the possibility of applying another method of processing signals xz(t) 
and yz(t), leading to graph Y(X) close to the ideal y(x). 
 
 



3.1. Looking for x(t) and y(t) as solutions of linear differential equations 
 

Let us assume that functions x(t) and y(t) are solutions of linear differential equations: 
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with initial conditions ),0()(ix  )0()(iy . For different types of xz(t) and yz(t) we can assume the 
constants A and B either equal to zero or 1± , as needed. 

If the used weight function satisfies the additional condition: 
 

0)()( )()( ==− dgdg ii  for 1,...,1,0 −= ni , 
 
where pn ≥−1 , qn ≥−1 , then due to the relations: 
 

dvvgvtxtx i
d

d

i
g

i )()()1()( )(
00

)( +−= ∫
−

,(18), 

which follows from: 

dvvgvtxtx
d

d

i
g

i )()()( 0
)(

0
)( += ∫

−

, 

 
by integrating by parts and the formula (18), we can find derivatives of disturbed signals xz(t) 
and yz(t) without differentiation of disturbances (and the signals themselves) [5]. Hence in 
Eq. (17), after averaging, all terms except the coefficients ai and bi will be known. These 
coefficients may be found by minimizing the quadratic performance indices [8]: 
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which leads to simple, linear systems of algebraic equations for ai and bi. Once they are 
computed, for arbitrarily assumed p, q and d, it is possible to find ) ,( ), ,(

minmin
dqJdpJ yx  and 

select such p, q, d, which give the best results. In this way we can find the forms of 
differential Eq. (17). If the models (17) are good (small values of xJ  and yJ ), then to obtain 
right functions x(t) and y(t) without disturbances it suffices to calculate initial conditions of 
the Eq. (17) and solve them by any simulation method. In this way we avoid deformation of 
Y(X) in the initial stage for small t and gain the possibility of prediction for large times not 
covered by measurements. 
 

3.2. Calculation of the initial conditions 
 

Neither signals xz(t) and )(tyz  nor the averaged signals gz tx )( 0  and gz ty )( 0  are useful for 

calculations of required initial conditions ),0()(ix  )0()(iy  and the reason is that they are either 



disturbed or deformed by the operation of averaging. Nevertheless, these conditions can be 
found, with sufficient accuracy, by means of the following method: 

The solution of the linear differential Eq. (17) has the form: 
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and similarly for the function y(t). For assumed a priori initial conditions x(i)(0) and the value 
of A the equation can be solved by means of any simulation method and this leads to the 
relation: 
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Repeating the same operation for p+1 different combinations of initial conditions x(i)(0) and 
A  for the same 0t  we obtain a system of linear algebraic equations which can be solved for 

gtf )( 00 , ,...,)( 01 gtf  ,)( 01 gn tf −  ga tf )( 0 . These computations should be carried out for 
different values of 0t  from the interval ),( dtd m − , where mt  is the observation time of xz(t). 

In turn, for a computable value of gz tx )( 0  we have the equation: 
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in which the initial conditions are unknown. Minimizing the performance index: 
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for previously calculated functions gtf )( 00 , …, ga tf )( 0 we obtain a system of linear algebraic 
equations for unknown initial conditions, with  an additional decrease in the influence of 
disturbances. These calculations have to be carried out separately for each function xz(t) and 
yz(t), preferably with the use of suitable auxiliary programs. After the initial conditions x(i)(0) 
and y(i)(0) are computed, we obtain from equations (17) the required functions x(t) and y(t) on 
arbitrary time interval starting from 0=t  and suitable curves Y(X) close to the curve y(x). 
Minimal values of indices xwJ  and ywJ  allow to assess the accuracy of these calculations. 
 

3.3. Simulation of experiment 
 

The functions x(t) and y(t) considered in Section 2 correspond to solutions of the 
differential equation: 
 

026.0)(2.0)( )1()2( =++ xtxtx , 
 
with the initial conditions 1.0)0(   ,1)0( )1( −=−= xx  and: 
 

026.0)(2.0)( )1()2( =++ ytyty , 
 



with the initial conditions .5.0)0(  ,0)0( )1( == yy  If we now consider disturbances as in the 
previous example in Section 2 and use the described identification procedures, then we obtain 
equations: 
 

02600.0)(2004.0)( )1()2( =++ xtxtx , 
 

0256.0)(193.0)( )1()2( =++ ytyty , 
 
corresponding to minimal values of the performance indices minxJ  and minyJ  for d = 2s. The 
initial conditions for these equations, found by means of the described method, practically 
coincided with the actual conditions with the error less than 1%. The obtained curves Y(X) 
together with y(x) and yz(xz) are shown in Fig. 3. They are much more accurate than those 
obtained by means of good filters. 
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Fig. 3. Graphs of y(x), yz(xz) and Y(X) obtained by the method of processing signals xz(t) and yz(t) described in 
Section 3.1. 

 
 

4. SUMMARY 
 

The simulation results confirm the practical effectiveness of both methods. In the case of 
the first method there is a possibility of finding even better filters, in particular for modified 
values of the parameters δ  and e (assumed arbitrarily) and admissible levels of the used 
performance indices. By changing these factors we can influence deformations of the signals 
x(t) and y(t) The situation may be also improved by using filters with time-varying parameters 
[9], but it should be emphasized that these filters are more complicated. 

The second method and in particular search for linear differential equations describing 
signals x(t) and y(t) requires to use specialized computer software [10, 11], however it seems 
that this pays off. Obviously, not all functions x(t) and y(t) correspond to solutions of linear 
differential equations but definitely this is the case for smooth functions described by 
polynomials in t with a finite number of terms. 

 
NOTATION 

 
ii ba ,  - parameters of transmittances or differential equations, 



BA,  - constant functions equal to 1±  or 0, 
d2  - interval of averaging, 

e  - tolerance band, 
)(tf  - function of time, 
)(tg  - weight function, 
)(th  - filter step response, 

yx JJ ,  - quadratic performance indices, 
)(sK f  - filter transmittance, 

)(tk  - filter impulse response, 
)(tmi  - i-th order moment of the impulse response, 

igm 2  - 2i-order moment of the weight function, 
)(tRi  - filter sensitivity function, 

s  - operator, 
vt,  - time, 

T  - filter time scale factor, 
)(0 tt  - delay time of filter dynamics model, 

δut  - time of the transient process, 

uT  - time of averaging, 
Ω,ω  - frequencies, 

)(),( tytx  - useful signals, 
)(),( tYtX  - recorded signals, 

)(),( )()( tytx ii  - time derivatives of x(t) and y(t), 
)(tz  - disturbances. 
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DYNAMICZNY POMIAR CHARAKTERYSTYKI   XYZ  OKREŚLONEJ PRZEZ PARAMETRYCZNE 
ZALEŻNOŚCI  XXX, ZZZ PRZY ZAKŁÓCENIACH PRZYPADKOWYCH 

 
S treszczenie  

 
Analogowe rejestratory XY budowane jako serwomechanizmy z ruchem ślizgowym praktycznie wyszły z 

użycia. Wykreślanie charakterystyki y(x) określonych zależnościami parametrycznymi xz(t), yz(t) przy obecności 
addytywnych, losowych zakłóceń odbywa się przy wykorzystaniu czujników pomiarowych o pomijalnych 
własnościach dynamicznych, karty przetwornika A/C, komputera oraz drukarki, w innej skali czasu z eliminacją 
wpływu dynamiki tych urządzeń. Wpływ zakłóceń można wydatnie zmniejszyć bądź stosując specjalne filtry 
jeszcze przed zapisem przebiegów w pamięci komputera, bądź dokonując odpowiedniego przetwarzania 
sygnałów zakłóconych zapisanych już w pamięci komputera. W pierwszym przypadku należy dobrać 
odpowiedni typ filtru i jego współczynnik skali czasu T, a w drugim - odpowiedni typ przetwornika tak, by 
uzyskany przebieg Y(X) był możliwie bliski przebiegowi teoretycznemu y(x). Obie techniki oferują odmienne 
możliwości i stwarzają problemy wymagające oddzielnego omówienia. 

 


