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ERROR DISTRIBUTION OF A SET OF MEASURING
INSTRUMENT AND AN INFLUENCE OF “STEP BY STEP”
CALIBRATION PROCEDURE ON THE DISTRIBUTION

The of an error ity distribution of a inspire a lot of
discussions. A basis o the considerations,presentedin this paper s adisrete, sep by step calibration
(asimpl ). The
paper shows that such error distribution of the simple if
some metrological as well as some economical demands are met. The distribution may be normal in
acaseofa complex when the values of settings of arearesult
of addition of many values represented by some elements calibrated scparately. A sclection procedure
of th lead toab error ofth y
selection factors in reality, i of the i
error has not only uorjaod bi but anormal aswell.

1. INTRODUCTION

PP
science presently. It is observed in the international
the way of the inaccuracy ion (Guide to lhe Expression of
Uncertainty in Measurement [1]). The Guide describes in the probabilistic way not only
a component of the measurement uncertainty caused by some random effects, but an
uncertainty component caused by the inaccuracy of the measuring instrument. The
latter statement is controversial, because the instrument error is classified traditional-
ly to a group of systematic errors.

The Guide's approach to the problem is not new. A similar approach was
presented by S. Trzetrzewinski in lecture [2] given at a metrologist meeting in
Wroclaw over 40 years ago. The author of this paper owns the text of it,
unfortunately without its full bibliographic data.

Interp ional difficulties d with probabilistic approach of the in-
strument error is discussed by J. M. Jaworski [3]. He introduces the idea of
randomisation and centring of this error by means of a mental experiment. This
experiment might be imagined as a series of observations made by a different,
randomly chosen sample of the measuring instrument. J. M. Jaworski emphasises,

ilistic h to the description of the real world events is dommalmg in
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that this method is not used in practice because it contradicts the rule of stability of
measuring experiment conditions, and is expensive.

The author has the following solution of this difficulty: having a sample of the
measuring instrument is a random event which randomises the instrument error. (The
point of this random event is, that the instrument sample we have is one of those
produced and sold). It is assumed, that the instrument sample is an element of some
family of the instruments satisfying defined metrological demands. A reading error of
this instrument for each specified measured value is a random variable of the
instruments family. The variable is characterised by some probability density
distribution.

A calibration procedure of the instrument influences the distribution. “Step by
step” calibration is one of the possible procedure. The procedure is relatively simple.
The paper shows, how the parameters of the procedure, possibly together with
a selection procedure, influence the considered probability distribution.

2. MODEL OF “STEP BY STEP” CALIBRATION PROCEDURE

The aim of a calibration procedure is to cause, that the instrument error of the
calibrated instrument 4, be contained in the interval of the acceptable limit error
L after the calibration procedure is finished:

—L<dy<L @

The “step by step™ calibration procedure is a discrete process, realised in M steps.
Generally, the m-th step of the procedure (m=0, 1, 2, ..., M) includes:

— settlement of the present value 4,, of instrument error,

— checking its relation with the acceptable error L,

— deciding whether to end the procedure or to introduce the reading correction
of the calibrated instrument in the proper direction.

In the successive steps the error has values 4, 4,, 4,, ..., 4, 41, ..., Ay differing
in correction step value 4, among each other:

| 4psi—4, | =4,>0 @

This is illustrated in Fig. 1. The figure explains, that the correction step should satisfy
the condition:

0<4,<2'L 3)

in order to finish each calibration successfully, i.e. to reach the calibration aim (1)
independently from the initial error value 4, — instrument error value of the
uncalibrated instrument.

The calibration procedure can be made shorter, if the number M of the correction
steps is calculated earlier on the basis of the initial error value 4, and the acceptable
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Fig. 1. llustration of a “step by step” calibration procedure of a measurement instrument

error value L and if the M steps is realised simultaneously. However this shortening of
the procedure does not influence the final distribution of the instrument error of the
set of instruments.

3. TRANSFORMATION OF ERROR PROBABILITY DISTRIBUTION
IN “STEP BY STEP” CALIBRATION PROCEDURE

The initial value of the instrument error 4, is a random variable of the family of
the instruments before calibration and it has a probability density distribution g(d,),
which will be called an initial function. Let us assume that this initial function is
known. The calibration procedure transforms the initial value 4, of the instrument

s
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Fig. 2. Transformation of the initial function g,(d,) into the final function g,(d)
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error into a final value 4,,, which satisfies the condition (1). The procedure also
transforms the initial function g,(4,) (the function of probability density distribution
of the uncalibrated instrument error) into a final function g,(4,,) (the function of
probability density distribution of the calibrated instrument error). Fig. 2 explains the

hanism of this fi i

1) A segment of the initial function g (4,) graph contained in the interval (— L, L)
and marked with thick line is still contained in the interval.

2) The segments of the initial function g (4,) graph contained in the following
intervals of the correction step length A4, marked with symbols —/, —2, ..., are
shifted right to the interval (— L, — L+ 4,).

3) The segments of the initial function g(4,) graph contained in the following
intervals of the correction step length 4, marked with symbols 7, 2, ..., are shifted left
to the interval (L—4,, L).

4) The sum of ordi: of all ioned in 1), 2) and 3) create the final
function gy(4,,) values in the interval (=L, L). The final function has value zero
beyond this interval.

The form of the final function gy(4,,) (the function of probability density
distribution of the calibrated instrument error) depends on:

— the form of the initial function g,(4,) (the function of probability density
distribution of the uncalibrated instrument error),

— the acceptable error value L,

the calibration procedure parameter — the correction step 4.

4. ANALYSIS OF THE ERROR DISTRIBUTION
OF THE CALIBRATED INSTRUMENT (THE FINAL FUNCTION)

The probability density distribution of the calibrated instrument error is the final
function gy(4,) of many parameters. Therefore, the variability intervals of these,
parameters should be limited to the real (from the practical point of view) values in
order not to consume much time for analysing the function and to receive clear and
useful results.

It can be assumed, the initial error 4, has a normal distribution with an expected
value 4,, and with a standard deviation o, — the initial function g(4,) is a Gaussian
function. This assumption is not controversial, because the errors of the instruments
before calibration depend on many random factors of their manufacturing process.

The calibration procedure analysis is illustrated in Fig. 2, which also shows, that
the form of the final function g,,(4,,) depends on the form of the initial function
£,(4,) not so much, provided the initial function is smooth and sufficiently “broad”.
This “breadth™ means sufficiently high value of the initial standard deviation ¢, in
relation to the ble error L. For le, the initial dard deviation g, a few
times smaller than the acceptable error L means high repeatability of the instrument
manufacturing process and generally eliminates the necessity of the calibration
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because the repeatable manufacturing process enables one to receive sufficiently low
(according to modulus) expected value 4,, of the initial error 4,. For the purpose of
numerical analysis the following values of the initial standard deviation g, are used:
0.7:L, L, 7-L.

The expected value 4,, and the standard deviation g, of the initial error 4, decide
together, whether the procedure of the instrument error correction would run in the
same direction for each instrument sample (one way procedure) or, randomly, in one
or opposite direction (two ways procedure). The one way procedure is usually more
comfortable from the technical point of view, because it needs simpler means of the
error correction in many cases, for example a laser cutting of electronic system
pathways or removing an excess material in case of weights or gauge blocks.

The fulfilment of the inequality:

| 45 | >2...3)0, @

is the practical condition of the one way procedure, i.c. the initial error 4, of the
normal distribution should be almost ever of the same sign. This inequality gives the
probability of one way procedure over (95 ... 99.7)%.

It is assumed for numerical analysis, that the expected value 4,,, of the initial error
4, is either equal to zero or it is positive (the error is corrected left in calibration
procedure) and has a value being equal to L. It is about 1.43- 0, for the lowest value of
6,=0.7-L, which is used in the analysis of an influence of the expected value 4,,.
Increase of the expected value 4,, does not change the analysis result significantly and
the negative expected values 4,, give the “mirror reflex” values of these values from
the positive side.

A domain of the correction step 4, value is defined by the condition (3). The
following values of the step 4, for the analysis: 0.5-L, L, 1.5-L, 2-L has been
assumed.

The rows 1, 2 and 3 in the Table 1 show twelve final function graphs for the zero
expected value 4, of the initial error 4, for three values of the initial standard
deviation g, 0.7L, 1.4-L, 7-L and for four values of the correction step 4, given
above. This study of the form of the final function g,,(4,,) allows one to create the
following conclusions connected with the case where 4,,=0:

1. The low values of the correction step (4, <L) give (at least for 4,,=0) the
bimodal final functions g,,(4,,) (compare with Fig. 2); probability density is high for
the final error 4, value near to —L and L. It is not advantageous.

I1. If the correction step equals the acceptable error (4,=L) the final function
2u(4y) (at least for 4,,=0) tends towards a rectangular distribution, if the initial
standard deviation g, increases (if ,—c0).

I11. The especially important case is, when the correction step equals the double
acceptable error (4,=2-L). The final function g,(4,) is then near (more detailed
analysis — see further) to the function of the rectangular distribution for sufficient
high values of the initial standard deviation o,
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IV. Specific features of the form of final function graph are emphasised by
relatively low values of the initial standard deviation o,

The analysis of the influence of the expected value 4,, on the final function
gu(4)) is made for two initial standard deviation values ¢,=0.7-L and o,=14-L.
The rows 4 and 5 of the Table 1 show the results of this analysis in form of eight final
function gy,(4,,) graphs — for one expected value 4, of the initial error 4, i.e. for
4,=L and for four values of the correction step 4,=0.5-L, L, 1.5-L, 2-L. The
results confirms the general character of the conclusions III. and IV. and they allow
one to formulate the following conclusion:

V. Non-zero expected value 4, of the initial error 4, causes asymmetry of the
final function g,,(4,,), especially by low correction step 4,<2. Here appears the
higher probability of the error of the same sign as the sign of the expected value 4.
The expecled value 4,, of the final error 4, is different from zero. This is an

event, which disapp when the correction step values 4, tends to
double value of the acceptable error L.

The conclusion V. demands more detailed analysis of the final function gy(4,,)

according to the expected value 4, of the final error 4,,.

5. EXPECTED VALUE OF THE FINAL ERROR
AND ITS CONVERGENCE TO THE RECTANGULAR DISTRIBUTION

The above analyses show, that the ratio 4,,,./L of the expected value 4,,, of the final
error 4, (the calibrated instrument error) to the acceptable value L is a function of
three variables, i.e. the ratios 4o,/L, 4,/L, a,/L. The graphs of this function are shown
in Fig. 3. The figure shows two families of curves: for o,/L=0.7 and ¢ /L=2 and for
4,/L=0.5,1,1.5,2. The ratio 4,,/L of the expected value 4, of the initial error 4, to
the acceptable error L is chosen as a continuos variable. The examined function is odd
in relation to this variable 4, ./L — a zero-point of the coordinate system is the middle
of symmetry of the graphs and therefore the graphs are made only for the positive
values of this variable. The analysis of this graphs leads to the following conclusions:

VI. The expected value 4y, of the final error 4, is strictly zero, if the expected
value 4,, of the initial error 4, is zero. At the same time this value 4,,, tends towards
zero, if correction step 4, tends towards the double value of the acceptable error L,
especially for sufficient high value of the initial standard deviation g,,.

VIL. If the correction step 4, value is near to the double value of acceptable error
L, then an oscill y ck of the exp d value 4, as a function of the ratio
4,/ L is noticed, especially for the low values of the initial standard deviation o, These
oscillations are a result of a wavy form of the final function g,,(4,,) of the final error 4,,
and a result of shifting of this “wave” by the changes of the expected values 4,,— what
can be observed on the graphs i m the last column of table 1 (for 4,=2-L, 3,=0.7-L).

VIII. The illati de of the d value A,.,, and !he ‘waving”
amplitude of the final function gy(4,) (di in VIL) d
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Fig. 3. Expected value of the instrument error as a function of the parameters: 4, . 4,,, 6,

rapidly if the initial standard deviation o, increases and then the final function
gy(4,) tends towards a function of the rectangular distribution.

So the probability density distribution gy,(4,,) of the final error 4, (the calibrated
instrument error) is convergent to the rectangular distribution, if the correction step
4, tends towards the double value of acceptable error L and if the standard deviation
a, of the initial error 4,, is sufficiently high. The latter condition should be met in real
situations, what was discussed already in Chapter 4. The correction step 4, value is
a result of a technologist decision, who determines the details of the calibration
procedure. If the technologist takes under consideration the economical aspects of the
procedure, then he should minimalise the calibration time — i.e. to minimalise the
necessary number of the calibration steps. It should lead him to decision: 4,=2-L!

6. SPECIAL CASES. MEASUREMENT INSTRUMENT SELECTION
AND THE SELECTION RESULT — A BI-RECTANGULAR DISTRIBUTION

It was proved above, that the error probability density distribution of the
calibrated measuring instrument is close to the rectangular distribution, if the rational
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correction step 4,=2-L, motivated by metrological and economical aspects is
chosen. The assuming of this instrument error distribution [4 — 11] seems to be proper
in many cases, especially, if the succeeding instrument readings or settings undergo
the calibration procedure.

Another situation arises, when the values of the instrument readings or settings
are a result of addition of many values represented by some elements calibrated
separately. Such situation can refer especially the measures in form of a set, for
example a set of the weights or the gauge blocks. It can refer also to the multi-value
measures of the electric quantities as the resistors and capacitors set step by step i.e.
the decade resistors and capacitors, if each element of these multi-value measures has
been calibrated individually, not together in the set. The error distributions of the
separated set el are lar (or bi lar — see further). The
distribution of the instrument total error (referring to the value set on the instrument)
— the combined distribution — is a convolution of the distributions of the elements
used to create the set value. This combined distribution tends towards a normal
distribution, if there is a big number of elements creating the set value — i.e., if the
conditions of the Central Limit Theorem are met.

It can be possible to reach a proper accuracy of a single value measure or a proper
accuracy of the elements of a multi-value measure by making selection. The elements,
which errors are contained in the limits of the acceptable error / lower than the
acceptable error L (/<L), can be chosen from the family of the elements of the
acceptable error L (the source family). This selection divides the source family of the
acceptable error L onto two disjoint families:

— a family of the el of a higher class (with the
— the family cutting out from the source family,

— a remainder of the source family — a remaining family of the elements of
lower accuracy class (with the acceptable error L).

If the source family is characterised by rectangular distribution (with half breadth
L), then the family of the elements of the higher accuracy class has also the
rectangular distribution, but with half breadth /. At the same time the remaining

error /)

24)

g -
L 4 o9 I L 4

Fig. 4. Bi-rectangular distribution
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family of the el of lower class is ct ised by bi-r I
distribution [4, 5], shown in Fig. 4. The acceptable errors for the following accuracy
classes are usually in relation near to 1 : 2, i.e. //La1/2. A bi-rectangular distribution
with //L=1/2 is called a special bi-rectangular distribution [4].

7. THE RANDOM EVENTS ATTENDANT UPON THE CALIBRATION
AND THEIR INFLUENCE ON THE INSTRUMENT ERROR DISTRIBUTION

The shown above idealised “step by step™ procedure of calibration leads to
rectangular error distribution of a family of simple measuring instrument by the
rational choose of the correction step. The selection procedure leads to the
bi-rectangular distribution. Every selection and calibration procedure is disturbed by
factors having a random character in reality. Those factors increase the instrument
error of a component which can be attributed to a normal distribution. The combined
distribution of the total instrument error is, by this assuming, a convolution of

0.5484) .

a)

Fig. 5. Influence of the random events on the il error distribution: a) — on the
S o hetd i
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a distribution, resulting from the calibration or from the calibration and selection
procedure — the rectangular or bi-rectangular distribution — with the normal one.

A study of the graphs of this convolution is shown in Fig. 5. Fig. 5a shows the
graphs of the normal-rectangular convolution, Fig. Sb — the graphs of the
normal-bi-rectangular convolution. The graphs are standardised (the convolution
standard deviation ¢ has value ¢=1). A relative value of a standard deviation g, of
the normal distributed error component (a ratio g,/ of the mentioned standard
deviations) is a parameter of the graphs. The graphs are smooth already by a very low
value of the ratio a,/, i.e. 0.05. If the ratio is near 1 — i.e. 0.8 — the convolution
graph has a form similar to the normal distribution graph.

The separate, not considered in this paper, is the question, how high can be really
the value of the ratio g,/a.

8. CONCLUSION

The paper shows, that the idealised “step by step” calibration procedure of
measuring instrument, where the rational metrological and economical aspects are
taken under i ion, leads to lar distribution of probability density of
instrument error. The selection procedure can cause a bi-rectangular distribution
(Fig. 4). These distributions can be changed by some random events, present by the
calibration or selection (Fig. 5).

Notation
Ay - instrument error after the instrument calibration
L — acceptable limit instrument error after the calibration
M ~ total number of the calibration steps
m — m-th step of the calibration procedure (m=0, 1, 2. M)
4, — instrument error in m-th step of the calibration
4, — instrument error before calibration — instrument error in 0-th step of the
calibration
4, — length of the calibration step
g4y — probability density function of the error 4,
gu(4y) — probability density function of the error 4,
a, — standard deviation of the error 4,
4o, — expected value of the error 4,
Ay, — expected value of the error 4,
1 — acceptable limit error of a higher class instrument
a — standard deviation of a lution of the probability density fi
g, — standard deviation of a normal distributed component of the in-

strument error.



302 STEFAN KUBISA

REFERENCES

Guide 1o the E: ion of inty in I1SO/IEC/OIML/BIPM, first edition (1992).
Trzetrzewitiski S.: Dokladnosé pomiaréw elektrycznych (Accuracy of the Electrical Measurements).
A typescript of a lecture given at a mel.mlog.sl meelmg in Wroclaw, Poland, in the 50-ties, 24 pages.

o

3 Jaworslu 1] M it blqd, ( Error, inty). Proc. of XXIX
K i ow, 10—12 1997, Naleczow —Lublin (1997), pp.

197-216.
4. Kubisa S Gmnunc Sum of the Expmded Uncemmma as an Estimate of the Combined Expanded

Systems, 111, 3—4, Warsaw (1997), pp.
157-167.

. Kubisa S.: Generalised Geometric Sum of the Expanded Uncertainties as an Estimate of Combined

Expanded Uncertainty. Proc. of the 4th International Symposium on Methods and Models in

Automation and Robotics, 26—29 Aug. 1997, Mi¢dzyzdroje, Poland, V. 2, pp. 593—598.

Kubisa S., Turzeniecka D.: ion of some imated Methods of

Estimation. Proc. of the Third International Symposium on Methods and Models in Automation and

Robotics, 10— 13 September 1996, Migdzyzdroje, Poland, pp. 537—542.

. Turzeniecka D.: Relations Between Selected Uncertainties and Their Influence on the Accuracy of
Various Evaluation. Proc. of the 4th International Symposium on Methods and Models in Automation
and Robotics, 2629 Aug. 1997, Micdzyzdroje, Poland, V. 2, pp. 573—578.

@

{

8. Turzeniecka D., Kubisa S.: Error and Uncertainty in Measurement — Teaching Problems. Proc. of 3rd
East-West Congress on Engi ion, 1520 1996, Gdynia, Poland, pp.
11812

9. Turzeniecka D., Kubisa S.: The Measures of Imperfection of Chasen Apymxum!ed Methods of
Combined Expanded 1y in ing Systems, 11,
34, Warsaw (1997), pp. 143—155.

10. Turzeniecka D., Waskiewicz Z.: Analiza sytuacji niej W ocenie i sci wyniku

pomiariw. Metrology and Measuring Systems, 1, Warsaw (1996).

. Turzeniecka D., Waskiewicz Z.: Wybrane problemy i
niepewnosci pomiaru. Proc. of VI Krajowa K j i, t. 1. P
Warsaw (1995), pp. 135 142.

j oceny

ROZKLAD PRAWDOPODOBIENSTWA BLEDU APARATUROWEGO W POPULACII
PRZYRZADOW I WPLYW KROKOWE] PROCEDURY KALIBRACJI NA TEN ROZKLAD

Streszczenie

Hipotezy dotyczace rozkladu i bledu wywoluja wiele dyskusji.
Podstawy do rozwazai przedstawionych w tym artykule jest dyskretna, krokowa procedura kalibracji
prostego przyrzadu p (i miary, elementu i
W artykule wykazano, ze taka dzi do jt j rozkladu i bledu
prostego przyrzadu pomiarowego, jezeli speimone s3 pewne i jiczne i i
Rozpatrywany rozklad moze tez byé normalny w lozonego przyrzadu pomi g0 — gdy
warlosci jego odczytow lub nstaw sg wynikiem ia wielu wartosci przez pewne
elementy kali selekcji tych 6w moze tez ¢ do bi-jednostaj-

nego rozkladu ich biedu. Kazda procedura kalibracji i selekci w realnych warunkach zakiocona jest
czynnikami przypadkowymi. Powoduja one, 7e rozklad biedu aparaturowego ma skiadowa normaina,
a nie tylko skladowe jednostajne i bi-jednostajne.
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