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STUDY OF RESULTS OF COMPARISON OF SELECTED
UNCERTAINTIES

The paper presents some situations in which it is necessary to compare uncertainties. Several
situations have been distinguished, in which the comparison result may decide about the following
factors: the selection of the approximated method of evaluation of expanded uncertainty, the
dominant position of standard component uncertainties, and the planned number of measurements.
The paper present the differences in evaluation, caused by selecting various uncertainties, whose
relationships are examined. The accuracy of obtained evaluation is used as a criterion for selecting
uncertainties to be compared.

1. INTRODUCTION

In many situations concerning the evaluation of uncertainty of measurement
results, it is necessary to compare the values of uncertainty in order to choose
correctly the approximated method of evaluation. Such comparisons are also
performed in other situations, for example when we examine the dominating
component of the standard uncertainty, or when we are planning the number of
observations. In the following chapters we will analyse these three situations.

So far, uncertainties whose relations are to be examined have been chosen on the
basis of the comparison of the limit values of errors. Limit error results from
imperfection of the measuring instrument, described by its accuracy index. It is
equivalent to examining the relations between the limit values of uncertainties. However
in view of the new methods of uncertainty evaluation, it seems to be more adequate to use
the relations between standard uncertainties. Standard uncertainties are components of
a vector sum which expresses the combined standard uncertainty. At the same time they
are characteristic parameters of components of probability distribution. The aim of this
paper is to examine the effects and differences in evaluation of the expanded uncertainty,
caused by selecting different uncertainties, whose respective relations are examined.

We will consider the case of simple direct measurement with two standard
uncertainties, where one of them is type A and other is type B standard uncertainty,
and the component errors are independent variables. In this case the combined
standard uncertainty u, and the expanded uncertainty u, will be equal:

u,=Jui+ud (1)
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u,=k(a) u,=kyp(a) ()

The combined standard uncertainty is the standard deviation of the con-
volution of component distributions for assumed probability «. If we assume that
random errors have the normal distribution, and type B uncertainty is caused by
the measuring device whose errors have the rectangular distribution, then we
obtain a convolution of the normal and the rectangular distribution N* R (1, 4].
The coverage factor k(x), is in this case a standardised variable of the convolution
of these two distributions and will be denoted by kyg(®) in opposition to the
symbol ky(x) for the normal distribution and kg(e) for the rectangular dist-
ribution.

It can be shown that kyg(«) is not only a function of probability «, but also
a function of the ratio of the standard deviations oy of normal distribution (or its
estimator S) and o, of the rectangular distribution, or of the rate of type A4 and type
B standard uncertainties [3, 4, 6].

Fena(®) =f(u, ﬁ) (3)

R

The above simple case of direct measurement involves certain problem in

evaluating expanded uncertainty, since the central limit theorem about the conver-

gence of a convolution of component distributions to the normal distribution is not
applicable here, because of the limited number of components.

2. METHODS OF EVALUATION OF EXPANDED UNCERTAINTY

2.1. Description of methods

For further analysis we assume that the method based on the convolution of the
normal and the rectangular distributions is an accurate way of evaluating expanded
uncertainty [3, 4, 5, 6]. It is also assumed that approximated methods are based on the
hypothesis that unknown convolution can be approximated by the distribution of the
component of bigger uncertainty. The above hypothesis is valid for an extreme cases:
if oy/6g— 00, than k(x)—ky(a) and if og/oy—oco than k(a)—kg(x). However this
hypothesis does not define the possibilities of estimation if the standard deviations are
related to each other is equal or near equal.

Using the value of kyg(«), for a known convolution of distributions N * R[1, 2, 4,
5], we assume that the measure of accuracy of k(x) is given by the error:

| k(o) —kng(@) | .
b=y 100% @)

The accuracy of evaluation of coverage factor k(«) decides about the accuracy of the
approximated method. We assume a particular value of error, equal to 20%. When
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the error exceeds this value, the analysed approximated method should be rejected as
not sufficiently accurate. This assumption may be verified for different measurement
situations.

The values of the errors 4, and J, caused by selecting various uncertainties whose
relationships are examined will be show on the figurs presented below.
Where:

5. = | k(o) —kg(a) |

= -100%
1 20 00% (5)
@@ |
0,= kva(@) 100% (6)

In this case the coverage factor k(c), assumed the values of the standardised
variables ky(x) of normal distribution or kg(x) of rectangular distribution respectively.
Where:

kp(@)=+/3'2 and ky(x)=z(x) (7)
2.2. Relations between standard deviations

The results of examining the accuracy of evaluation of expanded uncertainty when
the relations between standard deviation o, of normal distribution, and standard
deviation o of rectangular distribution are considered is known [3, 5, 6]. Fig. 1 shows
the absolute values of errors d, and 4, for the assumed probability «=0.99.
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Fig. 1. Absolute values of error of the coverage factor k(x), estimated on the basis of relation between
standard deviations o and o, for x=0.99

The values of errors do not exceed the assumed value 20%, if the relations (8) and
(9) are satisfied.
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u;‘= 1.0N= l_._S' (10)
ug \\noy \'naoy

As follows from Fig. 2 the error of the factor k(x) does not exceed the assumed
value of 20% under condition that determined relations are satisfied. These relations
are different for different number of degree of freedom n. An increase of n is followed
by an increase of the interval in which factor k(x) assumes the values of the
standardised variable ky(x«) of the normal distribution.

2.3. Relations between limiting values of expanded uncertainties

If we assume that type B expanded uncertainty has a rectangular distribution,
then this uncertainty is expressed by relation (12), and its limit value for «=1 is equal
to the limit error 4, of a measuring device (11).

qu=At (11)

um=kk(a)-uB=J3°a°j%=a-A; (12)
Therefore we will examine the relation between the limit values of the error of the
measuring device and the limit values of type A expanded uncertainties. These
relations may be defined in various ways, because k(«) may assume the values of the
standardised variable z(x) for the normal distribution, or of the standardised variable
tams for the ¢ Student distribution. Moreover, because the error of the measuring
device affects each result of the sample, the value of the compared quantities can be
assessed by the limit value of expanded uncertainty of a single measurement. If we
present these three different evaluations as functions of the estimator S of the
standard deviation gy, we will get the following evaluations for uncertainties:
— for a single result

Upy =2(a)S=3-8 (13)
— for the mean value
S S
Upp=2(a)—==3"—~ (14)
Ael2 ( ) \/n \/n
%
uAdszfq.m'\/: (15)
n

where: g=1—a and m=n—1.
We want to compare the accuracy of evaluations which use the relations between
different limit expanded uncertainties and of the evalutions assumed to be accurate.
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In order to do so, we have to present the rates of type A and type B limit expanded
uncertainties as a function of standard deviation oy and ;. We obtain the following
relations:

Upd) - ON
Al _ f3. X 16
v R (16)
Uhetz _ 3 on (17)
Ugel ﬂﬂ'R
tﬂl
@: am_ ON (18)
Upg 3:n Og

We can see that the above relations are different for a different number of degrees
of freedom n, except for the relation (16). It also follows from this relations that the
ratio of the standard deviation oy/o, is always smaller than the ratio of limit
expanded uncertainties. The results of the analysis are presented.

Fig. 3 shows the absolute values of error of the factor k(«), estimated on the basis
of relation between limit values of expanded uncertainties u,,, for a single result, and
Ugy, for 2=10.99. The ratio (16) of these uncertainties is not a function of the number
of degree of freedom.

As follows from Fig. 3 the error of the factor k() does not exceed the assumed
value of 20% on condition of fulfilling the determined relations:

Il upe>upy then k(a)=ky(a) (19)
If wupy>upg then k(oa)=rkg(x) (20)
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Fig. 3. Absolute values of error of the factor k(«), estimated on the basis of relation between limit expanded
uncertainties u, , for a single result and u, for x=0.99
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Figures 4a, 4b, 5a and 5b show the absolute values of errors ¢, and d,, which result
from the evaluation of the coverage factor k(x), when we examine the relationships
between limit expanded uncertainties described by relations (17) and (18). These
errors are presented for two different values of the degree of freedom: n=5 and
n=10, and for assumed probability «=0.99.

As follows from Fig. 4, the examination of relationship between limit value of
expanded uncertainty of u,, and limit value of expanded uncertainty ug, allows us to
evaluate the value of the factor k(x) with an error not exceeding the assumed value of
20% on condition of fulfilling the determined relations. These relations are also
different for different number of degree of freedom n. An increase of n is followed by
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Fig. 4. Absolute values of errors of the factor k(x), estimated on the basis of relation between limit expanded
uncertainties u,, and uy,, for x=0.99, a) for n=35, b) for n=10
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Fig. 5. Absolute values of errors of the factor k(x), estimated on the basis of relation between limit expanded
uncertainties u,,, and uy,, for #=0.99, a) for n=5, b) for n=10

an increase of the interval in which coverage factor k() assumes the values of the
standard variable of the normal distribution ky(z).

Similar conclusions may be drawn for the situation when we compare limit
expanded uncertainties u,.; and ug,. Since the limit expanded uncertainty uyy; is
expressed by the standardised variable 7,,, of the ¢ Student distribution, it is possible,
additionally to examine the error of evaluation of the coverage factor k(a), when it
takes the values of #,,,. However in this situation the basis for accurate evaluation
would be the convolution of ¢ Student distribution and rectangular distribution.
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The conclusion from the presented analysis seems to be ambiguous from the point
of view of achieved accuracy of evaluation of coverage factor k(e). In all discussed
situations, in which we examined the relations between the values of standard
uncertainties, and between various values of limit expanded uncertainties, the error of
evaluation did not exceed the assumed value 20%.

Moreover we can say that:

— if all examined uncertainties of type A are bigger than, or equal to,
uncertainties of type B, than the coverage factor k(x) may assume the values of the
coverage factor ky(x) of normal distribution

Oy Z0p=1Ug

Up = Uy

Upey = Upg =4, y<> k(o) =k (o) (21)
Upep = U = 4,

Upas = Upa =4

— if all examined uncertainties of type B are bigger than defined uncertainties of
type A, respectively, than the coverage factor k(x) may assume the values of the
coverage factor ky(2) of normal distribution or kg() of rectangular distribution. The
determined relations decided about it.

Ug=0g>0 4

Ug> Uy la
A, =Upge = Upe Y= k(tz) = {kNEa;} (22)
A= gy > Uper x

A=ty > Upety

However, since it is necessary to establish the defined, required relations in an easy
and unequivocal way, we should reject relations whose rate is a function of the
number of degree of freedom n.

3. DETERMINING THE DOMINATING COMPONENT OF UNCERTAINTY

It is assumed in metrology that when one component of the sum of two errors is of
least ten times bigger than the other one it is considered the dominating component. If
we assume that this procedure is based on examining the relations between the
numbers which are components of a sum, then for evaluating expanded uncertainty
we should examine the relations between the values of components of combined
standard uncertainty. However, in many cases these rules are not observed and it is
more common to examine the relations betwee limit values of expanded uncertainties.
Since the evaluations of type A expanded uncertainties may be different, the results of
such comparisons may also be different. Moreover, it results from relations (16), (17)
and (18), that the rate of limit expanded uncertainties for each of these three cases
considered is greater than the rate of the standard uncertainties. Therefore from the
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assumption that wup./ugy>10, it follos that uncertainty wy,, that is the error
introduced by the measuring device, may be neglected. However, the examination of
the ratio of standard uncertainties shows that:

10
- L 210, 23)
ug /3n
uy, 10
Sl et 24
g 24

3-10
uy_310_, 25)
Up bam

Therefore, the examination of relations between limit expanded uncertainties
cannot be the basis for deciding which uncertainty component is dominating, because
it might considerably narrow the limits of the confidence interval.

4. PLANNING THE NUMBER OF TEST MEASUREMENTS ON THE BASIS
OF RELATIONS BETWEEN STANDARD UNCERTAINTIES

The appropriate choice of the number of measurements allows to decrease type
A uncertainty. Stein’s two-step method [2] consists in using the results of the small
series of n' measurements to determine the number of measurements n, such that the
limit value of type A expanded uncertainty does not exceed the predetermined value
d in accordance with the relation:

n

7

from this we obtain

J k(a)?+ S

n> @7)

For the small number of measurements the coverage factor k(x) will, in this case,
assume the values of standard variable 7, ,, of the ¢ Student distribution, for g=1—«
and for m=n'—1. It is necessary to know the results of the first small series of
measurements in order to calculate the estimator of the unknown value of standard
deviation o, and to determine the value of the coverage factor k(x)=1, ,,. We may use
the results of the first series of measurements under the assumption that the variation
is the same in both series of measurements.

If it follows from relation between the values of type A and type B limit
uncertainty that u,, > uy,, then we can increase accuracy by increasing the number of
measurements up to n, and thus decreasing u,, in accordance with (26). In such case
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we usually assume that d=upy. We can show that in such situation we will obtain
a sharp decrease of the value of type A standard uncertainty compared to
standard uncertainty of type B, if the number n of measurements is considerably
increased. Assuming that the both variations are the same, and substituting
n from (26) we get:

—
u=Jui+ u§=ﬁ+ 3‘ (28)

[1 1

Since the value of ¢, for a small series of measurements and for «=0.9973, is a rule,
greater than 3, then 1/¢2,,>1/3. Hence, we must ask to what extend it is worth
decreasing standard uncertainty u, in the case when we cannot further decrease uy
because of the fixed accuracy of the measuring instrument and or of the measurement
method. Likewise, to increase exceedingly the number of measurements is neither
practical nor cost-effective. In answering the above question we must settle on an
adequate relation between u, and uy such that:

ug/u, >b, where b is an accepted integer. Then:

then

“Asb (30)
U
where b is an accepted integer. Then:
A S
up=—~=buy=b—— (31)

3 Jn

from this we obtain

S?
R=3:0%— (32)
4i
Without changing the principle of Stein’s method, then, we introduce a realistic
number of measurements z for a given relation between standard uncertainties of type
A and type B.

5. CONCLUSIONS

The author was inspired to compare the relations between the values of various
quantities by the absence of any measure which would allow to choose the quantities
to be compared. Moreover, the relations used so far might lead to some wrong
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conclusions particularly when new methods of evaluation of uncertainties are used
[2]. The comparative analysis, performed above, leads to the following conclusions:

— If there is significant difference between the values of uncertainties, whose
relations are examined, then the convolution of component distributions converges to
the distribution of greater uncertainty. In the most critical situation when the values
of uncertainties are very close to each other, the error may be considerable much
greater than the assumed value of 20% (if the described conditions are not fulfilled).
The conditions are different for different relations.

— There are considerable differences when we evaluate the dominating com-
ponent uncertainty, examining the relations between other uncertainties than stan-
dard uncertainties.

— In choosing the number of measurements » with Stein’s two-step method, the
researcher must settle on the relation between standard uncertainties, determined by
the integer b.
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BADANIE WYNIKOW POROWNAN MIEDZY WYBRANYMI NIEPEWNOSCIAMI

Streszczenie

Przedstawiono pewne sytuacje, w ktorych niezbgdne jest dokonywanie poréwnan migdzy niepewnos-
ciami. Wyrozniono sytuacje, w ktérych wynik poréwnarn miedzy niepewnoiciami moze decydowwaé:
o wyborze odpowiedniej przyblizonej metody oceny niepewnosci catkowitej, o dominacji standardowych
niepewnosci skladowych oraz o planowanej licznosci proby. Przedstawiono wyniki badan skutkéw i roznic
w ocenie, spowodowanych wyborem roznych niepewnosci, migdzy ktérymi badane sa relacje. Jako
kryterium wyboru niepewnosci, ktére maja by¢ porownywane, przyjeto dokladnosé uzyskiwanych ocen.
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