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	Abstract

Spectrophotometry is getting more and more often the method of choice not only in laboratory analysis of (bio)chemical substances, but also in the off-laboratory identification and testing of physical properties of various products, in particular – of various organic mixtures including food products and ingredients. Specialized spectrophotometers, called spectrophotometric analyzers are designed for such applications. This paper is on the state of the art and developmental trends in the domain of spectrophotometric analyzers of food and beverages with particular emphasis on wine analyzers. The following issues are covered: methodological background of food analysis, physical and metrological principles of spectrophotometry, the role of measurement data processing in spectrophotometry, food analyzers on the market and their future. General considerations are illustrated with examples, predominantly related to wine analysis.
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1. Introduction
In July 2006, an exciting news appeared in the media, both popular and professional, announcing that a research team of NEC System Technologies and Mia University in Japan designed and prototyped a robot able to check whether the contents of a bottle of wine corresponds to its label. The robot's performance was limited to several dozens of kinds of wine, but the promise of its database extension open prospects for further developments. Automatic analyzers of beverages, based on various measurement principles, had been known for some time, but that happening opened a new chapter in their development since wine testing is a task much more complex than testing of any other kind of alimentary product. Why? Because its aim is not only to differentiate between white and red wine, between port and champagne, or between French and Chilean Cabernet Sauvignon ... A robot for wine testing is expected to be able to state, with sufficiently low uncertainty, that the contents of a bottle has all the features promised by its label, while even a very modest label is providing a lot of information about the geographical origin and vintage of wine, the sort of grapes it has been made of, the type of barrels it has been aged in, etc. Much more information remains behind the scene: sensory properties of wine, identified by someliers using organoleptic means, and its chemical properties, identified by oenology expert equipped with sophisticated analytical instruments.

The robot for wine testing, launched in 2006, was a successful fusion of two powerful technologies: near-infrared spectrophotometry and measurement data processing. During last two decades, this approach has provided a quite universal solution for the analysis and testing of many alimentary products, especially outside analytical laboratories. Spectrophotometric analyzers for grain and fruits, milk and beer, chocolate and cheese, etc., are today manufactured by numerous companies all over the world. Their intensive development is motivated by many factors, including growing awareness of the nutritional issues, and increased incidence of fraud in the domain of fabrication and distribution of such products as wine, olive oil or cheese. This paper contains an outline of a broad engineering and application background of that technology and a more detailed review of the state of the art in the domain of measurement data processing dedicated to spectrophotometric analyzers. 

2. Spectrophotometric analyzers of food and beverages

Spectrophotometric tools are of increasing importance for analytical laboratories, as well as for environmental, biomedical and industrial monitoring. On the one hand, the development of corresponding applications is driven by a growing demand for this kind of tools, the demand implied by the advancement of standards related to environment protection, health care, individual and collective security, as well as by the widespread use of optical means for inspection of industrial procedures. On the other hand, however, this development is due to the market availability of miniature spectrophotometers: mini- and micro-spectrophotometers [1‒4]. 

The name “spectrophotometric analyser” is used here for various spectrophotometric sensors, devices, instruments, probes and testers dedicated to measuring physical and/or chemical parameters characterizing a pre-defined class of gaseous, liquid or solid substances. Thus, a spectrophotometric transducer (ST) is the heart of any such analyzer. It is converting an optical signal into a sequence of raw data 
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 is to indicate that the data are subject to various disturbances of ST-external and ST-internal origin. The wavelength values cover a broader or narrower subrange 
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 of one of the following standard intervals: 200–300 nm – middle-ultraviolet radiation (MUV), 300–380 nm – near-ultraviolet radiation (UV), 380–750 nm – visible radiation (Vis), 750–2500 nm – near-infrared radiation (NIR) or 2.5–10 μm – middle-infrared radiation (MIR). Several physical principles and corresponding devices may be used for ST design: a dispersive element, a tuneable filter, an optical heterodyne or an interferometer. The operation principle of the first of them, most frequently applied today, is explained in Fig. 1.
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Fig. 1. A spectrophotometric transducer (ST) based on a dispersive element – the principle of functioning.

The functioning of a spectrophotometer, based on the ST from Fig. 1 may be explained as follows:

· First, the source optical signal is converted into the data 
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 representative of its intensity spectrum 
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· Next, the same signal is passed through a cuvette, containing a sample of the substance to be analyzed, and converted into the data 
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 representative of its intensity spectrum, modified by a sample, 
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· Finally, the intensity data 
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 are processed by a digital processor in order to obtain estimates of the target parameters of the sample, e.g. concentrations 
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The interpretation of the intensity spectra 
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, in terms of concentrations (or other physical or chemical parameters) characterizing a sample under study, may be simplified if those spectra are transformed into the transmittance spectrum defined as:
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The data 
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where 
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 is the ST response to the zero-intensity optical signal. The interpretability of spectra may be further improved by using the absorbance scale defined as follows:
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and the corresponding absorbance data:
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An example of absorbance data is shown in Fig. 2. They disclose several informative absorption peaks whose maxima are characterised by the coordinates provided in Table 1.
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Fig. 2. The data representative of the absorbance spectrum of red wine.

Table 1. The coordinates of the absorption peaks in the data representative of the red wine spectrum.

	PEAK NUMBER
	WAVELENGTH
	ABSORBANCE
	PEAK NUMBER
	WAVELENGTH
	ABSORBANCE

	1
	540 nm
	0.812 AU
	5
	1950 nm
	2.851 AU

	2
	1000 nm
	0.051 AU
	6
	2270 nm
	0.206 AU

	3
	1200 nm
	0.053 AU
	7
	2300 nm
	0.216 AU

	4
	1450 nm
	1.250 AU
	8
	2500 nm
	1.034 AU


The spectrophotometric analyzer of food are designed for measuring physical and (bio)chemical parameters characterizing food products (including beverages) and ingredients. NIR spectrophotometry is of particular usefulness for food analysis because the spectra of organic samples comprise broad bands arising from overlapping absorption peaks corresponding to C-H, O-H and N-H chemical bonds. The main advantage of NIR spectrophotometry, when applied for routine analysis of food, is its simplicity and speed: usually no sample preparation is necessary and the time of analysis is not greater than 1 minute. Another advantage of NIR spectrophotometry is that it allows several constituents to be identified concurrently. Finally, the relatively weak absorption due to water enables one to analyze high-moisture food products and ingredients. The most important applications of spectrophotometric analyzers of food are the following: checking the quality of food, monitoring of the food production process, providing data necessary for production control, specification of food products necessary for their labelling, and precise classification of food products enabling their better pricing.

3. Calibration of spectrophotometric analyzers of food and beverages

3.1. General considerations

The absorption spectrum of a sample 
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 of the compounds that sample is composed of; it may be used, therefore, for measuring those concentrations. In most cases, the dimension of the vector 
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). As a rule, the data provided by STs are highly correlated from one wavelength value to the next and from one sample to another. This correlation decreases the apparent information in the data; but – if an approach is used that takes it into account – it is possible to turn the correlation to a benefit by taking advantage of the redundancy. Therefore, a methodology for solving those problems, as a rule, comprises two steps: the compression of the data 
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. A large variety of algorithms can be generated by combining various techniques of data compression with various techniques of estimation. The compression consists, as a rule, in the selection of the most informative among the parameters computed according to various principles, such as: projection of the data 
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; soft modelling techniques, such as principal component analysis or partial least squares. The most self-imposing tool for estimation of concentrations is a neural network being a universal approximator [5], but – for the reason of efficiency – multidimensional B-splines and wavelet transforms are viable alternatives in many instances of calibration. For historical reasons, the algorithms for estimation of concentrations are most studied within the discipline called chemometrics. 

3.2. Multivariate methods and procedures

The univariate calibration is, by definition, related to modelling the dependence of the concentration of a single compound on a single spectral data point [6], while multivariate calibration might involve determining the concentrations using the spectral data acquired for tens or hundreds of wavelength values. A general scheme of multivariate calibration, applied in practice, comprises the following steps:

· selection of the reference samples (mixtures) to be used for identification of the model;

· acquisition and visual evaluation of the spectral data, used for calibration, before and after preprocessing;

· a first modelling trial to decide whether it is possible to attain the expected quality of the model and whether non-linearity should be introduced in this model;

· refinement of the model, e.g. by considering elimination of possible outliers with respect to the model, selecting the model complexity;

· final validation of the model.

Any calibration procedure includes the estimation of model parameters, cf. [7, 8]. For the time being, no single method for estimation is considered the best in all spectrophotometric applications. Sometimes, the most traditional tool, i.e. the ordinary least squares estimator is sufficient. Its main drawback is its sensitivity to collinear components in the spectral data. Therefore, several alternative methods have been developed to remediate for this drawback. The most commonly used among them is the partial least squares estimator. It has gained enormous popularity among the researchers, and – consequently – has been enhanced and modified in various ways, including the incorporation of some nonlinearity and constraints, such as the positivity of spectral data and the positivity of concentrations of compounds 
[9-13]. Another alternative method, developed to remediate for ill-conditioning of the parameter estimation, is ridge regression [14], and the generalized ridge regression, where each variable gets a slightly different ridge parameter [15]. 

4. Conclusions

The research problems related to the spectrophotometric analysis and testing of food ingredients and products – such as olive oil, cheese, grains, bread, meat, milk or chocolate – are approached in a similar way as those related to wine analyzers and robots. The existing instruments are rather bulky (both in terms of external dimensions and mass), but their miniaturization seems to be imminent due to the rapid advancements of micro-technologies applicable in spectrophotometry. The number of commercially-available miniature and relatively cheap spectrophotometric transducers has been growing quickly. Their dimensions are in the range of millimetres and – consequently – their metrological performance is on the whole far below that of laboratory instruments, but this deficiency may be at least partially compensated by sophisticated algorithms of measurement data processing. It seems very probable that the on-going progress in the domain of microspectrophotometry and digital signal processing will lead, in the perspective of 5(10 years, to the widespread use of hand-held spectrophotometric analyzers in food manufacturing and distribution, next – in restaurants, bars and private kitchens. A wine analyzer of size comparable with that of a cellular phone and priced below EUR 300, would attract many buyers even today...
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